PolyDis Manual ver. 2.6, 05.07.2018

D. Stoiber, R. Niewa: PolyDis: Simple Quantification Tool for Distortion of Polyhedra in Crystalline Solids, *Z. Kristallogr.* Submitted

Installation: Excel Add-in Solver

Open Microsoft Office Excel, go to File \rightarrow Options and click on Add-Ins in the list on the left side. Next to Manage at the bottom is a dropdown box: chose Excel-Add-Ins and click Go. Check the box next to *Solver* and click OK.

PolyDis

PolyDis provides spreadsheet tabs for the following polyhedra: tetrahedron, hexahedron, octahedron, icosahedron, cuboctahedron, dodecadeltahedron (2 versions), trigonal prism, trigonal antiprism, tetragonal prism, tetragonal antiprism, hexagonal prism. Pick the respective tab at the bottom of the opened excel file.

PolyDis minimizes the deviation between a given and an ideal polyhedron. The data required by the program are the unit cell parameters and atomic positions of the polyhedron. This data has to be filled into the cells within the RED border. It is important to fill in the atomic positions in the exact order shown in the picture of the polyhedron in the top right.

To run the *Solver* add-in go to **Data** and click **Solver** in the analysis group.

Excel spreadsheet

1		A	В	С	D	E	F	G	н	1	J	К	
1	Compound nar	me											
2			fill in your o	data into cells o	f this colour							01	
3	unit cell dimer	nsions (in pm)					IMPORTANT	: order and					
4	a-axis		320	α-angle	90		alignment of a	toms have to					
5	b-axis		320	β-angle	90		match the	e picture					
6	c-axis		320	γ-angle	90								
7													
8			coordina	ates of real tetr	ahedron	c	oordinates of id	eal tetrahedro	n				
9	atom		x/a	y/b	z/c		x/a	y/b	z/c				
10	Central atom	Z	0.5	0.5	0.5	Z*	0.49	0.498	0.4875				
11	Ligand 1	P1	1	0.99	-0.03	P1*	0.9776	0.9899	0.0071				-
12	Ligand 2	P2	0.95	0.01	0.96	P2*	0.9757	0.0081	0.9719				DO
13	Ligand 3	P3	0.03	0.022	0.02	P3*	0.0063	0.0146	-0.0054	$\mathbf{P4}$			P3
14	Ligand 4	P4	-0.02	0.97	1	P4*	0.0004	0.9794	0.9764			$\mathbf{P2}$	
15													
16													
17	ligand		deviation		avera		tom		turning a	ingles of respecti	ve ideal		
18	P1		5.139198643	%	normalized	4.143739517	-			tetrahedron			
19	P2		3.365607912	%	real	117709862	m		angle	rad			
20	P3		4.208072652	%					θ	4.105959401	235.2541445		
21	P4		3.86207886	%	displaceme	t of Z from cent	re of gravity		φ	3.931347642	225.2496277		
22					normalized	1.913853592	1		τ	1.051197537	60.22918228		
23					real	5.162325058	m						

Solver window:

zierreig	iegen.		35310			B		
Bis:	○ <u>M</u> ax.) Mi <u>n</u> .	○ <u>W</u> ert:	0				
Durch Ä	ndern von \	/aria <u>b</u> lenzellen:						
\$1\$20:\$1	\$22					E		
Unterlie	gt den Neb	enbeding <u>u</u> ngen:						
						Hi <u>n</u> zufügen		
						Ändern		
						<u>L</u> öschen		
					A	les zu <u>r</u> ücksetzen		
				~	L	aden/Speichern		
Nich	it eingeschr	än <u>k</u> te Variablen al	s nicht-negativ fe	stlegen				
Lösung: auswäh	sm <u>e</u> thode len:	GRG-Nichtlinear			~	O <u>p</u> tionen		
Lösun Wähle Wähle Solver	gsmethode n Sie das Gi n Sie das LP Probleme, d	RG-Nichtlinear-Mo Simplex-Modul fü die nicht kontinuie	dul für Solver-Pro ir lineare Solver-Pr rlich sind.	bleme, die kont obleme und da	inuierlici s EA-Mo	n nichtlinear sind. dul für		

Put the Excel sheet cell address of the cell marked in BLUE into the BLUE target cell of the new window *Solver* and the YELLOW variable cell adresses into the respective YELLOW cell in *Solver*.

Click on Solve.

The coordinates of the scaled and fitted ideal polyhedron are shown within the GREEN border. The deviation of the coordination sphere from ideal conformation and the displacement of the central atom are shown in % and in pm within the PURPLE border.

Troubleshooting:

The *Solver* plugin doesn't change the values within the YELLOW border to negative values. Instead of turning the polyhedron to -10° it stops at 0, which is not the desired result. IF there is a 0 in one of the cells within the YELLOW border replace it with a 5 and run *Solver* again.

The deviations of every single atom are shown in the cells with the green background left of the PURPLE border. IF one of these values is inexplicably very far off the other values check its coordinates and the unit cell parameters for typos.