
Polynator � A Tool for Local Geometry Analysis

Contents

1 Introduction 1

2 Getting Started 1

3 Using Polynator - Navigating the GUI 2

3.1 Fitting Polyhedra � The Main Window 2

3.2 Output Files . 4

3.3 The Settings Menu . 5

3.4 The Custom Polyhedron Construction Menu 5

4 Mathematical Aspects 10

4.1 Overview . 10

4.2 Pairing Up Model and Real Vertices 11

4.3 Centering the Model Polyhedron . 14

4.4 Optimization of Shape Parameters 14

5 Navigating the Code 16

1 Introduction

Polynator is a computer program written in the Python language. It allows the user

to evaluate coordination environments and other shapes found in crystal structures

by �tting model polyhedra to them. This documentation is intended to help the

user navigate the features Polynator provides. It also gives an overview of the code

structure and the mathematical methods fueling Polynator.

2 Getting Started

The program is available as a free download from https://www.iac.uni-

stuttgart.de/forschung/akniewa/downloads/. This website currently gives the op-

tions of downloading the Python script or a .zip folder containing a Windows

executable �le. The Python version provides full access to the source code. It re-

quires Python 3.9 or a newer version of Python 3 (slightly older versions might be

1

�ne too). All imported modules are part of the Python standard library. The exe-

cutable version requires Windows 10 or a newer version of Microsoft Windows. To

get started with the latter, unpack the .zip folder wherever you would store applica-

tions on your computer. Then start Polynator by executing polynator_main.exe.

The folder extracted from the .zip �le is self-contained, it doesn't create con�gura-

tion �les anywhere else on your computer. Therefore, you can uninstall Polynator

by simply deleting the folder. For convenience, you may want to create a shortcut

to polynator_main.exe somewhere easy to reach on your computer. Polynator

comes with a graphical user interface (GUI). The main window is created when

starting the program. With the .exe version in particular, this may take a few

seconds. If the window doesn't appear in your tab bar after 10-15 seconds, check

if you meet the system requirements and that you haven't made any changes to

the folder.

3 Using Polynator - Navigating the GUI

3.1 Fitting Polyhedra � The Main Window

To start working with the program, click on 'load input �les' on the bottom left

corner of the main window and locate any number of .cif �les on your computer.

You may then click on 'Run'. In this case, Polynator will construct a coordina-

tion environment around every unique atom it �nds in the .cif �les using default

cuto�s and then sequentially �t each built-in model polyhedron to each of these

environments. This is most likely not what you want to happen. You have several

tools at your disposal to shape Polynators behaviour:

� The criterion panels at the top of the window allow you to �lter out central

atoms, ligand atoms and model polyhedra, respectively. To do this, �rst

select a logic operater (and / or / not), then type in or select from the

dropdown menu any valid entry for that box. Press Enter to con�rm your

entry. It will appear in the box. The polyhedron criteria panel will also

accept fragments of valid entries, which will often be less selective, but the

atom criterion panels do not (otherwise 'N' would also �nd Nb, Ni, Zn etc.).

The atom criteria panel includes wildcards like '*M' for all metals (see tab.

3). The atom criterion panels also have some advanced functionality in

allowing you to add dummy atoms and setting a maximum for the number of

(non-rotational) degrees of freedom per polyhedron. Central dummy atoms

2

are especially useful, as they allow you to inspect any shape in your crystal

structure that has no atoms at its center. To add one, simply type in a string

of three coordinate numbers between 0 and 1, separated by commas and/or

spaces, then press Enter.

� The coordination environment �lters allow you to de�ne minimal and maxi-

mal global values for the distances of ligand atoms from central atoms. You

may also �nd it useful to specify a maximal value for the coordination num-

ber of central atoms; atoms in excess of this number will be dropped until

CNmax is reached, with the most distant atoms going �rst. As an alternative

to these caps, Polynator can automatically carve out coordination environ-

ments for you. This feature is purely for convenience and isn't based on a

very scienti�c method or intelligent algorithm. It basically looks for atoms

with a similar distance from the central atom and jams them into a coordina-

tion sphere, starting a new one whenever a large jump occurs or the distance

range within a coordination sphere grows too large. Use it by entering one

or more small integers into the �eld labelled 'coord. sphere:'. If you do, dmin,

dmax and CNmax, as well as atomic radii will be ignored.

� Atomic radii allow you to be more selective when it comes to manually

de�ning a coordination environment. If atomic radii are de�ned for the

central and / or the ligand atoms and the sum of both is smaller than dmax,

it replaces dmax for this combination of atoms. To use atomic radii, �rst

select one or more entries you made in either central atom or ligand atom

criterion box, then enter a number into the respective 'set radius:' �eld and

press enter.

The '�t settings:' panel gives the user the choice to include the central atom in

the list of atoms Polynator will include in the list of atoms when measuring the

csm. It is measured against the centroid of the model vertices and if 'best �t' is

also selected below, it will factor into the centering of the model polyhedron.

The user has the option of manually entering a main axis (see chapter 4,

�g. 2). This bypasses the automatic belt assignment step and forces Polynator

to assign belts according to this axis. This may be useful if the user suspects a

wrong belt assignment. An axis is entered in the form of fractional coordinates,

separated by commas or spaces. If the 'don't adjust' box is ticked, this axis will

be static throughout the whole �tting process.

3

3.2 Output Files

Upon a successful run, output �les can be generated via 'Generate Output'.

They will be put into a subdirectory of the folder holding the .cif �les that were

evaluated. There are �ve types of output �les, the generation of which can be

toggled in the settings menu.

Detailed output �les (.out) are purely text-based. One .out �le is gener-

ated for each �t. The information in an .out �le is split up into blocks.

The block of information at the top should mostly be self-explanatory. The

excentricity vector is the distance between the real central atom and the model

center.

The next block gives vertex-speci�c coordinates and directional distortion infor-

mation. All coordinates given are fractional (the same format you would �nd in a

.cif �le). The delta vector gives the di�erence between the model and real ligand

vector. Its length is given in the next line. The entry 'angular delta' refers to

the angle a given ligand vector is removed from its model counterpart, from the

perspective of the model center. 'Radial delta' means the di�erence between the

distances of that atom vector and its model counterpart from the model center.

'Delta phi' and 'delta theta' split the 'angular delta' into the respective spherical

coordinate representations.

The third block holds some statistical information. This includes averages for the

delta length, radial delta and angular delta measures from the previous block.

The standard deviation given for the delta length measure should not be confused

with a quanti�cation of measurement errors; Polynator's statistical errors are

negligible (many tests suggest the same is true for systematic errors). In addition,

this block gives the csm value for a central projection of all real and model

vertices onto a unit sphere and for a cylindrical projection onto the main axis.

The model constructor gives a compact, Python-dictionary-like representation

of the model polyhedron belts and their parameters. If you have trouble under-

standing this part, try playing around with the custom polyhedron window or see

chapters 4 and 5.

Lastly, there are the parameter values broken down into free and, for some

polyhedra, constrained ('bound') parameters.

The minimal .cif �les Polynator creates are intended mostly for visualiza-

4

tion and perhaps veri�cation in an external program. They have space group

P1 regardless of the original space group and hold only the real and model

vertices involved in the respective �t. Both are true to the size and proportions

of the original coordination environment, but only the fractional version is also

true to the original unit cell. However, that version may also have unconvenient

placement and overlaps between translated coordination environments, which are

not present in the cartesian version.

The data table is generated as a single .csv �le which contains the most

important information about all �ts in the last run combined. This includes the

csm, the averaged 'delta length', 'radial delta' and 'angular delta' values discussed

above and the free and constrained parameters for each �t.

The .log �le tries to record if something went wrong during the calcula-

tions. If you observe unexpected behaviour, it might be worthwile to look at this

�le, otherwise don't worry about it.

3.3 The Settings Menu

The settings menu allows the user to customize the set of model polyhedra

Polynator is actively using without having to specify your preferences in the

'polyhedron criteria' box of the main window every time. For example, if you

don't care about 'exotic' model polyhedra, you may �nd it useful to enter and

con�rm the inclusion criterion #essential (see the Polynator's tags in tabs. 1 and

2). The menu also allows you to customize the output behaviour. Lastly, there

are three �elds holding numbers which allow you to change some of Polynators

behaviour when �tting Polyhedra.

3.4 The Custom Polyhedron Construction Menu

The custom polyhedron construction window is accessible from the main window

via 'use as blueprint' (select a polyhedron in the box above to use it as a starting

point) or from the settings menu. It allows the user to construct their own model

polyhedra. The central component of this is worked out in the 'belts:' panel,

where the user can add or remove belts (see �g. 2) with a number of vertices

5

speci�ed in the 'v:' �eld. There is also a number of optional parameters the user

can apply to each belt. These are probably best understood by selecting various

model polyhedra in the 'model polyhedra' box at the bottom of the main window

and observing them in the 'viewer:' panel. Click at the boxes at the bottom of

that panel to toggle the e�ects of each parameter separately. Alternatively, it is

highly recommended to just play around and create your own polyhedra. The

comment panel at the bottom will guide you.

The new model polyhedron also needs a name. Additionally, you have the option

of assigning a point group, a symmetry operation pertaining to the main axis, a

list of 'aristohedra', i. e. preexisting polyhedra with higher symmetry or fewer

degrees of freedom, as well as a list of search terms or categories for the new

polyhedron. The point group has no bearing on the functionality other than

being displayed at various points and allowing the user to search for it. The

axis symmetry allows Polynator to determine whether a rotoinversion center

or horizontal mirror plane is present in main axis direction. This changes the

behaviour when the atom vertices are assigned to belts. The aristohedron

category a�ects the tree-like structure displayed in the main window's results box

after �tting. It also precludes the model polyhedron from being evaluated if a

polyhedron higher up the chain is already a perfect �t. Custom polyhedra can

currently not inherit their belt assignments from their aristohedra. Finally, the

'tags' category mostly provides search terms, but there are three built-in tags

that actually change Polynators behaviour in another way (see tab. ??).

Lastly, you may add constraints ('bundles'). This is not necessarily a sim-

ple task. Some guidelines will be given here, but it is recommended to look at

existing polyhedra with bundled parameters (They all share the #bundled tag).

There are two types of bundled polyhedra:

� The �rst type is based on a rigid base polyhedron, which is modi�ed by the

bundled parameters. it has a 'len' parameter that is not part of the bundle.

The bundled parameters may change its shape, but must not change the

average distance of the vertices from the center (otherwise calulations will

be inaccurate, potentially in a subtle way). The parameters for this type of

polyhedron must thus work together to manipulate the angular components

of the spherical vertex coordinates. This type is best suited for polyhedra

6

with a cubic point group. Examples include the >pyritohedral_icosahedron

and >tetrahedral_cuboctahedron.

� The second type is usually exclusively handled by bundled parame-

ters. Whenever a variable is adjusted, each parameter that depends

on it must also be adjusted, as calculations would otherwise be inaccu-

rate. This makes these the most computationally expensive polyhedra

in Polynator. There is currently only one built-in example; the >ax-

truncated_hexagonal_trapezohedron, which requires the bundle to keep its

pentagonal faces from folding up.

7

Table 1: Tags attached to model polyhedra. Note: The tags #molecule, #axis_�xed and

#chiral directly a�ect Polynators behaviour, as explained here, while the others only

serve as categories and search terms. Most tags refer to the shape of a polyhedron and

should be self-explanatory. Those are listed in list 1.

tag explanation

#molecule The polyhedron is centered on its central atom.

#axis_�xed The main axis determined in the belt assignment step is never

changed during the optimization steps. Orientation is only op-

timized with regards to rotation around this axis.

#chiral Rigid chiral polyhedra, such as the archimedean snub cube, are

tested for either enantiomer, independently from this tag. This

tag adds the su�xes '_clockwise' or '_anticlockwise' to the poly-

hedron name in the results list and the output �les, depending

on which enantiomer �ts better. This tag should not be applied

to every polyhedron with chiral space groups such as twisted

prisms, whose parameters actually allow the manifestation of

either enantiomer without a separate test run.

#rigid The polyhedron is only scaled with �xed proportions, never de-

formed.

#free The polyhedron has all degrees of freedom allowed by its point

group (this includes some rigid polyhedra with cubic point

groups).

#limited The deformation of the polyhedron is restricted by non-

symmetry based constraints (the opposite of #free). This in-

cludes all Johnson and Catalan polyhedra, many archimedean

polyhedra and some others.

#essential Subjective category comprising only the polyhedra most com-

monly encountered in inorganic chemistry.

#bundled All polyhedra with at least one parameter bundle (see section

4). While this amounts to constrained parameters, it is not to

be confused with non-symmetrical shape constraints as captured

by the #constrained tag.

#equilateral All vertices have the same distance from neighboring vertices

they share an edge with.

#equidistant All vertices have the same distance from the center

8

Table 2: Tags referring to the polyhedron shape.

#antifrustum #capped_octahedron #gyrobicupola

#antiprism #capped_prism #gyroprism

#archimedean #capped_tetrahedron #heterobipyramid

#axis-bicapped_antiprism #capped_truncated_cube #johnson

#axis-bicapped_prism #catalan #kinked

#axis-capped_antifrustum #chamfered_cube #linear

#axis-capped_antiprism #cupola #orthobicupola

#axis-capped_frustum #deltahedron #planar

#axis-capped_prism #diminished_icosahedron #platonic

#axis_truncated #distorted_cuboctahedron #prism

#bidisphenoid #edshammar #pyramid

#bipyramid #elongated_bicupola #pyritohedron

#capped_antiprism #equator-capped_prism #regular

#capped_biprism #frank-kasper #scalenohedron

#capped_cube #frustum #skewed_prism

#capped_cuboctahedron #fullerene #twisted_prism

#capped_cupola #fully_capped_prism

Table 3: Wildcards for groups of elements in the atom criteria panels (not case sensitive).

wildcard corresponding elements

* all elements

*Grn all elements in periodic table group n

*M all metals

*TM all transition metals (except rare earth metals)

*RE all rare earth elements including lanthanoids, actinoids, Sc and Y.

*E all main group elements

*Ln lanthanoids including La and Lu

*An actinoids including Ac and Lr

*X typical anions (N, P, O, S, Se, F, Cl, Br and I)

9

4 Mathematical Aspects

4.1 Overview

Figure 1: Flow chart of Polynators working process.

Polynator seeks to minimize the continuous symmetry measure (csm) [1] , which

is a least squares based metric for the dissimilarity between a set of pairs of real

and model vertices a⃗i and v⃗i de�ned as

csm = 100 ·
∑

i |⃗ai − v⃗i|2∑
i |⃗ai − c⃗|2

. (1)

where c⃗ is the centroid of the real vertices.

To minimize the csm, Polynator internally has to solve four main problems:

1. Pairing up model vertices with real vertices in an optimal fashion.

2. Finding the optimal coordinates to center the polyhedron at.

3. Finding the optimal orientation of the model polyhedron. This has an an-

alytical solution in the Kabsch Algorithm [2], which will not be discussed

here.

10

4. Optimizing one or more parameters to obtain the ideal shape of the model

polyhedron.

Table 4: Mathematical symbols presented in this chapter generally do not match their

counterparts in the code or the GUI. Here is a translation table.

symbol code name location in the code

a⃗ij vec_real Polyhedron.belts_real (a list of lists of vectors)

v⃗ij vec_model Polyhedron.belts_model (a list of lists of vectors)

M var_matrix covariance_eigen() function

m̂ main_axis Polyhedron.main_axis

S HALF_SPHERE assign_to_belts_from_scratch() function

q tuple_quality assign_to_belts_from_scratch() function

Q total_delta Polyhedron.match_real_vecs_to_model() method

Pij (various names) Polyhedron.adjust...() methods

n "v" DICT_BLUEPRINTS, Polyhedron.belt_dicts

s "len" Polyhedron.belt_dicts, Polyhedron.dict_parameters

h "z" Polyhedron.belt_dicts, Polyhedron.dict_parameters

w "xy" Polyhedron.belt_dicts, Polyhedron.dict_parameters

φ "phi" Polyhedron.belt_dicts, Polyhedron.dict_parameters

4.2 Pairing Up Model and Real Vertices

This problem is in theory easily solved by just checking every permutation of

vertex pairings. However, since the number of permutations grows factorially

with the number of vertices and each 'checking' step comes with a signi�cant

computational cost, this approach has to be discarded. As far as we are aware,

there is no substitute that is determined to yield the perfect solution for any

distribution of atom vectors while allowing for a computationally cheap imple-

mentation. However, some observations about the typical shape of coordination

environments can be exploited to formulate a heuristic that comes very close to

this goal.

11

Figure 2: Separation of a cuboctahedron into belts.

The �rst step towards this is to separate the model polyhedron into subsections,

which we will call belts. This is done along a main axis (see �g. 2), which is a high

symmetry axis of the model polyhedron. The origin is set to either the central

atom or the centroid of all ligand atoms (the di�erence is unimportant here). The

atom vectors are then projected onto a unit sphere surface (central projection).

To assign each atom vertex to a belt of the model polyhedron (not yet to a speci�c

model vertex), a tentative main axis vector is chosen from among a prede�ned

set S of 92 vectors, which are distributed almost evenly on a sphere surface (they

correspond to the vertices of a fully capped truncated icosahedron). The atom

vectors are ranked according to their dot product with this axis vector and the

belts are �lled up in this order. This process is repeated for each remaining axis

vector in S. Model polyhedra with a rotoinversion center or horizontal mirror plane

require only the 46 axis vectors corresponding to one hemisphere. Duplicate belt

assignments are discarded. The remainder is ranked according to the heuristical

quality measure q. To obtain it, the main axis for each provisional assignment is

�rst re�ned as follows:

1. The centroid c⃗i of the atom vertices in each belt i is calculated and subtracted

from each atom vector a⃗ij in the respective belts to obtain an auxiliary vector

b⃗:

b⃗ij = a⃗ij − c⃗i . (2)

2. A covariance matrix M is constructed from the cartesian coordinates x, y

12

and z of the b⃗ij vectors:

M =

∑

ij x
2
ij

∑
ij xij · yij

∑
ij xij · zij∑

ij yij · xij

∑
ij y

2
ij

∑
ij yij · zij∑

ij zij · xij

∑
ij zij · yij

∑
ij z

2
ij

 . (3)

3. The unit eigenvector of M with the smallest eigenvalue is chosen as the main

axis m̂.

4. The quality measure q can now be calculated as

q =
∑
i

|⃗ci × m̂|2 · ni +
∑
ij

(⃗aij · m̂)2 (4)

where ni is the number of vertices in belt i. The �rst term represents hor-

izontal displacements of the belts, the second vertical displacements of the

individual vertices within each belt.

The four belt assignments with the smallest q are evaluated further, the rest is

discarded. To pair up ligand atoms and model vertices, the combinations that

maintain the order of dihedral angles (up to one per ligand atom) are ranked,

again, heuristically. To do this, the model polyhedron is �rst rotated around m̂ so

that atom vector a⃗00 lies in the plane constructed by m̂ and an arbitrarily picked

model vertex v⃗tare (v⃗tare must not be collinear with m̂). For each atom and model

vector, the dihedral angle α in relation to v⃗0 is measured (m̂ serves as the hinge).

Atom and model vectors are then (separately) ordered within the individual belts

according to their dihedral angles and tentatively paired up in this order. The

quality Q is measured as

Q =
∑
ij

|v⃗ij × m̂| · |∆αij| (5)

where ∆αij is the angular di�erence between the paired vectors with belt and

vector numbers i and j. This is repeated until each atom vector a⃗ij has been in

the α = 0 position once. The pairing scheme with the smallest Q is evaluated

further, the rest is discarded.

13

4.3 Centering the Model Polyhedron

Due to the nature of the least squares �t, the optimal center for the model poly-

hedron is always the centroid of all atoms that are �tted. Depending on the user

input, this may or may not include the central atom. One property of the least

squares �t is that the polyhedron centering is independent from orientation and

shape of the model vertices, meaning it can in principle be set wherever and only

adjusted after the other calculations are �nished. However, Polynator centers the

polyhedron on the centroid of all ligand atoms while other calculations are ongo-

ing, unless the polyhedron characteristics or the user input require it to be placed

on the central atom. For convenience, if the central atom is included in the list of

atoms to be �tted, it is ignored at �rst and the centering is retro�tted at the end

to include it.

4.4 Optimization of Shape Parameters

In the simplest case, the model polyhedron is a rigid body and the only parameter

to be optimized is its size s. To do this, the length P of each each atom vector a⃗ij

when projected onto its corresponding model vector v⃗ij is aquired as

Pij = a⃗ij · v̂ij . (6)

If all model vectors have the same length, the problem can be solved analytically

by taking the arithmetic mean of P :

sopt =

∑
ij Pij∑
ij 1

. (7)

Otherwise it is solved by iteratively minimizing the squares of the di�erences be-

tween |v⃗ij| and Pij. This is still very straightforward, as the corresponding function

is always a parabola, so there are no problems with local minima or discontinuities.

Sometimes, for example with the generic fully capped cube, there are two or more

size parameters (one for the cube vertices, the other for the caps). These can just

be solved separately with the same methods.

Many polyhedra, such as generic prisms, antiprisms, pyramids..., require the sep-

arate optimization of height and width parameters h and w (instead of a single

s parameter, not in addition). Thanks to the pythagorean theorem, this is very

easily done. To optimize h, instead of projecting the atom vectors onto the model

14

vectors, as was done before, they are projected onto the main axis m̂:

Pij = a⃗ij · m̂ . (8)

Similarly, to optimize w, they are projected onto the normal plane of m̂:

Pij = a⃗ij · n̂ij where n⃗ij = a⃗ij − (⃗aij · m̂) · m̂ . (9)

From here, the exact same methods as for optimizing s are applied.

Parameters φ for twisting motions (e. g. for twisted prisms) are also straight-

forward, but computationally more expensive, as they require vector operations

during iterations. During these iterations, the model vectors are incrementally

rotated around m̂. After each rotation step, the sum of the squared distances

between atom and model vectors is measured. If it is satisfactorily minimized,

the iteration is terminated. In the built-in polyhedra, φ is always balanced by a

counterrotation φ∗ in a di�erent belt, which is optimized along with φ, in order

to maintain as much as possible of the model orientation.

There are also modulating versions of h, w and φ which allow the modelling of nor-

mal mode vibrations of orders higher than 0. As an example, a square is modelled

by a single belt containing four vertices, with a single w parameter. By adding

hmod, wmod or φmod, the disphenoid, rhombus or rectangle, respectively, can be

derived from it. Modulated parameters are not applied equally to all vertices in a

belt, but rather with a prefactor generated by a sinusoidal function (cos for hmod

and wmod, sin for φmod). The frequency f and o�set δ of these functions are de-

termined when a model polyhedron is de�ned and never changed or optimized.

Hence, the value of modulating parameters corresponds solely to the amplitude of

the respective sinusoidal function. The prefactor g for each vertex is obtained as

a function of its position p in an n-membered belt (belts are sorted according to

the dihedral angles of their member vertices around m̂, enumeration starts at 0):

g(p) =

hmod, wmod → cos
(

2π·f ·(p+δ)
n

)
φmod → sin

(
2π·f ·(p+δ)

n

) (10)

The divergent choice of basic trigonometric functions may seem odd, but in

practice makes it easier to think about these, due to their transversal (hmod, wmod)

and longitudinal (φmod) nature. Optimization of the modulating parameters

15

follows the same priciples as for their non-modulating counterparts.

Lastly, there is the option to bind multiple parameters to freely de�nable functions

of one or more newly de�ned variables, e�ectively constraining them. This allows

for model polyhedra such as the elpasolite cuboctahedron, the pyritohedron

and pyritohedral icosahedron, as well as symmetry-preserving non-equilateral

versions of archimedean solids and more. Optimization of these variables al-

ways involves an iterative process where each parameter bound to the variable

is applied at each step and the progress is gauged as explained for the φ parameter.

After all shape parameters have been optimized, the orientation is adjusted

again, taking into account the new shape of the polyhedron. Three repetitions of

this cycle are generally su�cient to re�ne the csm to at least six decimal places,

which is already more than most crystal structure data provide in the �rst place.

5 Navigating the Code

Polynator is written in a loosely object-oriented style. Other than the modules

imported from the standard library, all of the code is contained in the polyna-

tor_main.py �le. There are seven large classes, seven smaller classes and some

regular functions. At the top, several global constants are de�ned, including

the gargantuan DICT_BLUEPRINTS, which has coordination numbers as keys

and lists of tuples as values. The tuples are referred to as blueprints. They

store all the information needed to construct the model polyhedra. Each has

three entries, which are referred to as name, dict_info and belt_dicts, respectively.

The main process is initiated at the very bottom of the script. It mostly

instantiates a MainWindow object, which contstructs the main GUI window and

orchestrates the further procedure. Upon calling the MainWindow.preview() or

MainWindow.run_full() methods, it instantiates a CifFile object for each .cif

�le it was fed by the user, which reads the �le and stores the information it

contains. Depending on the crystal structure and other inputs, each CifFile may

host any number of CoordinationEnvironment objects. Each CoordinationEnvi-

ronment contains a �xed set of atoms and is home to any number of Polyhedron

objects, which are built from blueprints �tting the coordination number of the

respective CoordinationEnvironment object. Each Polyhedron has a belts_real

and a belts_model attribute, which store the vertices as a list of lists. The

16

main calculations are carried out within the Polyhedron objects. The actual

optimization methods have names starting with adjust_ and are speci�c to the

type of parameter being �tted.

Other central components include the prototype_polyhedron() function,

which constructs the vertices of a blank model polyhedron, as well as

the assign_belts() function, which wraps assign_belts_from_scratch()

and recycle_belt_assignment(), which take care of most of problem 1

as discussed in chapter 4 (the vertices are �nally paired by Polyhe-

dron.match_real_vecs_to_model()). The recycle_belt_assignment() function

implements 'piggybacking', i. e. it allows a polyhedron to inherit its belt

assignment from one of its aristohedra under certain conditions.

The modulating parameters described in section 4 (which are named di�er-

ently in the code, see tab. 4) go along with modi�ers '_frq' and '_o�' for the

frequency and o�set of the sinusoidal wave function, respectively. Parameter

types 'phi', 'phi_mod', 'xy_mod' and 'z_mod' also have an '_init' modi-

�er, which allows for the introduction of a proportionally �xed value of this

parameter, without introducing a degree of freedom. This is handled by the

prototype_polyhedron() function. The '_init' su�x is useful for the construction

of many rigid polyhedron models, including the rigid base models for polyhedra

with bundled parameters. As discussed in section 4, some model polyhedra

require multiple parameters to be modi�ed in a synchronized manner. This is

referred to as a 'parameter_bundle'. It is de�ned in the dict_info section of

a blueprint containing one. The parse_math() function has the main purpose

of processing the mathematical expressions binding parameters to variables.

This could also be done using eval() or probably some function from a module,

but the custom function allows for dealing with �oating point issues (e. g.

arccos(1.000000000000002) nested somewhere in a mathematical expression).

The Con�gWindow and CustomPolyhedronWindow classes are responsible

for the other two windows of the GUI. The VisualPolyhedron class is responsible

for the graphical polyhedron models displayed in the top right corner of each

GUI window. The Vec class is a reinvention of the wheel, but should be

self-explanatory. The TreeNode class is used to construct data trees which hold

blueprints or Polyhedron objects and encode their symmetry relations. These

17

are visualized in the 'results:' box of the main window and of utility for the

recycle_belt_assignment() function. The remaining classes Buttoon, CritSearch,

CheckList, RadioList and EntryList are GUI utility classes.

References

[1] M. Pinsky, D. Avnir, Inorg. Chem., 1998, 37, 5575.

[2] W. Kabsch, Acta Crystallogr. A, 1976, 30, 513.

18

