
User Manual for Polynator 1.3

Contents

1 Introduction 1

2 Getting Started 1

3 Using Polynator 2

3.1 The Graphical User Interface (GUI) 2

3.2 Coordination Environments . 4

3.3 Molecules and Cages . 7

3.4 Selecting Speci�c Models . 8

3.5 Custom Model Axis . 9

3.6 The Settings Menu . 9

3.7 The Custom Model Construction Menu 10

4 Output Files 12

4.1 Data Tables (.csv) . 13

4.2 General Output Files (.out) . 13

4.3 Atom Speci�c Output Files (.aso) 14

4.4 Minimal Coordinate Files (.cif) . 14

4.5 Report Files (.log) . 15

5 Mathematical Aspects 15

5.1 Overview . 15

5.2 Pairing Up Atom and Model Vertices 17

5.3 Centering the Model . 20

5.4 Optimization of Shape Parameters 21

5.5 Generic Distortion Values . 23

6 Navigating the Code 24

6.1 General Structure . 24

6.2 Classes . 24

6.3 Global Constants . 25

6.4 Utility Functions . 26

6.5 Model Parameters . 26

1 Introduction

Polynator is a computer program written in Python. Its main purpose is to �t

models to atom arrangements. An atom arrangement is a set of atoms found in

a crystal structure, typically a coordination environment or a molecule. A model

represents a speci�c geometric shape, e.g. an octahedron or a pentagonal prism.

Models are de�ned by a set of vertices which may be manipulated according to

a set of rules speci�c to each model. In the context of computations, atoms and

model vertices are internally represented by vectors. A model may be rigid or

dynamic. Rigid models have �xed proportions, meaning they can be rotated and

resized, but not deformed in any other way. Dynamic models can be deformed

in a variety of ways (e.g. stretching, twisting, puckering...). Fitting a model to

an atom arrangement allows for the quanti�cation of the distortion of that atom

arrangement with respect to that model. This allows the user to more precisely

describe a coordination environment or molecule, compare distortions between

similar structures, or �nd trends within structural families. Polynator can also

be utilized to construct Voronoi polyhedra and to calculate angles, volumes and

surface areas. In addition, it provides a convenient way to extract structural units

from larger crystal structures. This documentation is intended to assist the user

in navigating these features. It also gives an overview of the code structure and

the mathematical methods fueling Polynator.

2 Getting Started

The program is available as a free download from https://www.iac.uni-

stuttgart.de/forschung/akniewa/downloads/. This website currently gives the op-

tions of downloading the Python script or a .zip folder containing a Windows

executable �le. The Python version provides full access to the source code. It re-

quires Python 3.9 or a newer version of Python 3 (slightly older versions might be

�ne too). The graphical user interface is accessed by running the polynator_gui.py

script. The main program is contained in polynator_main.py and can be run in-

dependently. All imported modules are part of the Python standard library. The

executable version requires Windows 10 or a newer version of Microsoft Windows.

To get started with the latter, unpack the .zip folder wherever you would store

applications on your computer. Then start Polynator by executing polynator.exe.

The folder extracted from the .zip �le is self-contained, it doesn't create con�gura-

1

tion �les anywhere else on your computer. Therefore, you can uninstall Polynator

by simply deleting the folder. For convenience, you may want to create a shortcut

to polynator.exe somewhere easy to reach on your computer. Polynator comes

with a graphical user interface (GUI). The main window is created when starting

the program. With the .exe version in particular, this may take a few seconds. If

the window doesn't appear in the tab bar after 10 seconds, check if the system

requirements are met and that no changes have been made to the folder.

3 Using Polynator

3.1 The Graphical User Interface (GUI)

Figure 1: Screenshot of the main window of the GUI.

The GUI comprises a total of four windows:

� The main window is opened when starting the program. It allows the user

to �nd atom arrangements, �t models and generate output �les.

� The settings window is accessible from the main window via the Settings

button. It allows for modi�cations to some aspects of the program.

2

� The custom model construction window allows the user to create new models.

It is accessible from the main window via as custom model.

� The small custom carving instructions window allows the user to de�ne new

carving schemes (see section 3.3). It is accessible via Settings → de�ne new

carving scheme.

Each window contains several framed, labelled panels. Except for the custom

carving instructions window, each window has a viewer panel at the top right

position. On the main window, this allows for the visualization of atom ar-

rangements, models and �t results by clicking on entries of the preview atom

arrangements, preview models, or results panels, respectively. The visualizations

for models include the deformations caused by free parameters. These can be

toggled separately at the bottom left corner of the viewer panel. Visualizations of

results show an overlay of atom arrangement and �tted model, each of which can

be hidden separately by clicking on the appropriate boxes at the top of the panel.

They also show the distances between paired atom and model vectors (∆/pm).

Each window has some space on the bottom for the display of comments

and error messages. When hovering over a widget, a comment about that widget

is displayed there in most cases. This feature can be disabled in the settings

menu. When clicking on an entry in the preview models panel, some information

about that model is displayed in the comment bar.

To start working with the program, click on Load input �les on the bot-

tom left corner of the main window and locate any number of .cif or .xyz �les

on your computer. A click on Run starts Polynator's main process. However,

depending on the crystal structures and the type of atom arrangement which you

are interested in, some additional input may be required, as explained following

within this chapter.

3

3.2 Coordination Environments

Figure 2: Evaluating a coordination environment in Polynator. In this screenshot, user
inputs are marked by black arrows. Only calcium and oxygen atoms are valid as central
atoms and ligands, respectively. The distance from the central atom is capped at 3 Å
for each ligand. The central atom contributes to the �t, its corresponding model vector
is set at the model centroid.

The criterion panels at the top of the window allow for the selction of speci�c

central and ligand atoms. To do this, �rst select a logic operator (and / or / not),

then type in or select from the dropdown menu (accesible via the ↓ key) any valid

entry for that box. Such an entry may be an element symbol, a speci�c atom

name (e.g. Ca1) or a wildcard (e.g. '*M' for any metal, see tab. 1). Press Enter

to insert your entry into the box directly below. You may also leave these boxes

empty, in which case all possible central and ligand atoms will be evaluated.

4

Table 1: Wildcards for groups of elements in the atom criteria panels (not case sensitive).

wildcard corresponding elements

* all elements

*Grn all elements in periodic table group n

*M all metals

*TM all transition metals (except rare earth metals and actinoids)

*RE all rare earth elements including Sc, Y, lanthanoids and actinoids.

*E all main group elements

*Ln lanthanoids including La and Lu

*An actinoids including Ac and Lr

*X typical anions (N, P, O, S, Se, F, Cl, Br and I)

By default, any atom with a distance from the central atom larger than dmin = 0.1

Å and smaller than dmax = 3.5 Å will qualify as a ligand. These values can be

freely adjusted in the atom arrangement �lters panel. The same is true for the

maximal coordination number CNmax. If necessary, the most distant ligands in

excess of this number will be dropped until the number of ligands is equal to CNmax.

As alternatives to these simple cap values, the �t settings panel gives ac-

cess to two algorithms which select the ligands for a coordination environment

according to speci�c rules. The gap method looks for gaps in the distance

distribution of ligands from the central atom. If a gap between two consecutive

ligands is larger than a threshold value, this is considered the beginning of a

new coordination sphere. The threshold value is calculated as the product of the

smallest central�ligand distance times a coe�cient with a default value of 0.2 (gap

size). The gap method often allows easy access to any of the �rst few coordination

spheres. However, for more disordered coordination environments, it becomes

much less useful, as coordination spheres aren't as neatly separated anymore. The

Voronoi method is based on the construction of a Voronoi polyhedron around the

central atom. Atoms are considered ligands if their respective Voronoi polyhedron

shares a face with the Voronoi polyhedron of the central atom and this shared

face subtends a solid angle greater than a given threshold (20◦ by default) from

the perspective of the central atom. A similar algorithm is implemented in

ChemEnv by Waroquiers et al. [1], who took inspiration from O'Kee�e [2]. Note

that all methods to select ligands come with their own biases and will work better

5

for some types of coordination environments than for others. That said, the

Voronoi method generally yields reasonable results as long as the coordination

environment is non-planar.

Atomic radii allow for more selectivity when it comes to manually de�ning

a coordination environment. If atomic radii are de�ned for the central and/or

the ligand atoms and the sum of both is smaller than dmax, it replaces dmax for

this combination of atoms. To use atomic radii, �rst select one or more entries in

either central atom or ligand atom criterion box, then enter a number into the

respective set radius �eld and press enter.

Polynator will by default not include the central atom in the arrangement

of atoms which are to be �tted. To include the central atom, check the box �ts

include central atoms in the �t settings panel. In this case, the central atom

is �tted against the centroid of all atom vectors and will also factor into the

centering of the model. This panel also gives you the option to �t the vertices of

a Voronoi polyhedron constructed around the central atom instead of the actual

ligands.

6

3.3 Molecules and Cages

Figure 3: Analyzing a faujasite supercage in Polynator. The cage is formed by silicon
atoms, each at the center of a SiO4 tetrahedron. They are connected by specifying a
radius of 2 Å for each silicon atom in the 'molecular connectivity criteria' panel. This
will produce an in�nite framework of silicon atoms. To separate one cage, the '$fauja-
site_supercage' carving scheme is added.

To �nd molecules and empty cages in a crystal structure, we recommend to use the

molecular connectivity panel. This will connect selected atoms based on covalent

radii speci�ed by the user or otherwise taken from a default table. You may

also choose from among a number of topological schemes to conveniently isolate

a particular subunit from a larger molecule or an in�nite framework of connected

atoms. These schemes are most easily accessible from the dropdown menu by

typing '$' into the input �eld at the top right of the panel. They allow you to

isolate e.g. a sodalite cage from the in�nite framework of silicon atoms in a zeolite

structure or to obtain all hexagonal rings from an organic molecule. While most

schemes will only look for one speci�c shape, some are intentionally designed to

�nd a slightly wider variety. For example, the scheme for fullerenes will �nd any

polyhedron with only pentagonal and hexagonal faces as long as its dual is convex.

Keep in mind that appropriate atom radii are a prerequisite for �nding the desired

shape! Also be aware that a polyhedron with a central atom which is connected

to the rest of the graph will not be found by this method (use the regular central

7

atom and ligand criteria for that). Additional schemes can be de�ned via Settings

→ de�ne new carving scheme.

Table 2: List of prede�ned carving scheme names.

rings [various sizes] cubes sodalite cages

pyramids [nbase ≤ 6] icosahedra ZTA-type supercages

bipyramids [nbase ≤ 6] pentagonal dodecahedra faujasite-type supercages

prisms [nbase ≤ 6] rhombic dodecahedra fulvalene skeletons

antiprisms [nbase ≤ 6] gyrobifastigia biphenyl skeletons

deltahedra cuboctahedra norbornene skeletons

fullerenes anticuboctahedra barrelene skeletons

tetrahedra snub cubes naphthalene skeletons

octahedra adamantane cages porphyrin skeletons

3.4 Selecting Speci�c Models

By default, all available models with the respectively appropriate number of ver-

tices will be �tted to each atom arrangement. The model criteria panel allows

you to select or exclude speci�c models. This panel will also accept fragments of

valid entries (e.g. '>cuboc' will �nd the archimedean cuboctahedron). This is in

contrast to atom criterion panels discussed above (otherwise 'N' would also �nd

Nb, Ni, Zn etc.). A model may have more than one valid name. These synonyms

are displayed in the comment line upon selecting a model in the model preview

panel. Models can also be �ltered by tags (see tab. 3) and by point group. You

may select the '◦f_max' mode and enter an integer to exclude all models with more

degrees of freedom than that number (not counting the three translational and two

rotational degrees of freedom available to every model). For example, entering '1'

will exclude all dynamic models, leaving only rigid models such as the Platonic

and Archimedean solids. The model exclusion criteria in the Settings menu serves

a similar function, but will exclude unwanted models permanently.

8

Table 3: Model tags. In contrast to earlier versions, tags do not bestow any properties
onto a model. However, they may hint at speci�c behaviors. For example, models with
the #prolate or #oblate tags use strategies 2 and 3 for their assignment, respectively.

#rigid #dynamic #symmetry_aligned

#prolate #oblate #constrained_parameters

#molecule #cage #occupied

#pseudopolyhedron #chiral #essential

#equilateral #equidistant #planar

#regular_polygon #platonic #archimedean

#johnson #catalan #deltahedron

#fullerene #frank_kasper #capped_cube

#pyramid #bipyramid #heterobipyramid

#scalenohedron #prism #antiprism

#twisted_prism #frustum #antifrustum

#equator-capped_prism #axis-capped_prism #fully_capped_prism

#capped_frustum #capped_antifrustum

3.5 Custom Model Axis

The user has the option of manually entering a model axis (see chapter 4, �g. ??).

This bypasses the automatic belt assignment step and forces Polynator to assign

belts according to this axis. This might be useful if an automatic belt assignment

appears suboptimal. An axis is entered in the form of fractional coordinates,

separated by commas or spaces. Unless the allow optimization box is ticked, this

axis will be static throughout the whole �tting process.

3.6 The Settings Menu

The settings menu comprises several options to customize Polynator's behaviour.

Changes made in this menu are remembered between sessions (they are stored in

.cfg �les located in the same folder as the main .exe or .py �le.). The available

options are as follows:

� Output behavior: Checkboxes allow the user to select which types of output

�les to produce. They also give the options to overwrite existing output �les,

to automatically produce outputs after every �t and to have only the best

�tting model for each atom arrangement appear in the output.

9

� Skipping redundant models: If a model turns out to �t perfectly, versions of

that model with additional degrees of freedom are not evaluated if the skip

redundant models box is checked.

� Fit metric: Distortion values can be displayed either in the native δ metric

or as CS(h)M-type values S (See section 5.1). The �tting procedure is not

altered by either choice, since both values are minimized in the same fashion.

� Point group notation: The user is given the choice to have point group

symbols displayed in Hermann-Mauguin (default) or Schön�ies notation.

� Maximal δ value: Provides an upper threshold for the distortion. Models

with a higher value do simply not appear in the output or the results box.

� Variable tax: The internal parameter δtaxed is obtained by adding a small

number (the variable tax) to the neutral δ value of a �tted model for each free

variable that model has. The value of δtaxed is not displayed anywhere, does

not appear in the output �les and does not in�uence the �tting procedure.

However, it is consulted when deciding on the best �tting model, it in�uences

the grayscale in the results box and determines the order of the list of models

in the .out �les.

� Model �lter: The active models panel makes it possible to customize the set

of models Polynator is actively using without having to specify preferences

in the model criteria panel of the main window every time. For example, if

'exotic' model polyhedra are generally not useful to you, it may be bene�cial

to enter and con�rm the exclusion criterion not #essential (see tab. 3 for a

list of such model tags).

3.7 The Custom Model Construction Menu

The custom model construction window is accessible from the main window via

as custom model (select a model in the box above to use it as a starting point) or

via Settings → new custom model. It allows for the creation of new models. The

central component of this is worked out in the belts panel, where the user can add

or remove belts (see �g. ??) with a number of vertices n. There is also a number

of optional parameters which can be applied to a belt (see section 5.4). These

parameters are perhaps best understood by selecting various model polyhedra in

the preview models box at the bottom of the main window and observing them in

10

the viewer panel. Click at the boxes at the bottom of that panel to toggle the

e�ects of each parameter separately. Alternatively, it is highly recommended to

just play around and create your own models. The comment panel at the bottom

of the window will guide you to some extent.

In order to guarantee a valid optimization procedure, some limits are placed on

the customizability of a model. Firstly, the centroid of each belt must rest on

the model axis. This means it is not possible to de�ne e.g. a capped pentagonal

pyramid (with the cap on a triangular face). Allowing imbalanced belts would

introduce a nontrivial optimization problem for the centering of the model. For

similar reasons, the centroid of all model vertices must rest on the origin at all

times. Secondly, the frequency of each modulated parameter in a belt must be

a product of one or more prime factors of the number of vertices n in that belt.

Otherwise, imbalances and coupling between the optimization of orientation and

shape would arise. If a model contains one or more s parameters, the average

distance from the origin to the model vertices scaled by that parameter must be

exactly 1.0. This ensures that the optimized parameter value matches the actual

size of the model. Finally, if a belt contains a φ parameter, there must either

be another belt with the same number of vertices and the same φ parameter

in counterrotation (e.g. '-phi1'), or another belt with a φ parameter entitled

'phi*'. This eliminates or at least minimizes coupling between the optimization of

orientation and those torsion angles, which would lead to slow convergence.

The new model also needs a name. Additionally, you have the option of assigning

a point group, a symmetry operation pertaining to the model axis, a list of parent

models, i.e. preexisting models with higher symmetry or fewer degrees of freedom,

as well as a list of search terms or categories for the new model. However, these

have no functionality other than being displayed at various points and allowing

the user to search for them.

Lastly, constraints ('bundles') may be added. These are useful for dynamic

models which do not have all of the degrees of freedom their point group would al-

low. De�ning these is not always a simple task and may require some calculations.

Some guidelines will be given here, but it is recommended to look at existing

models with constrained parameters (They all share the #constrained_parameters

tag). There are three types of models with constrained parameters:

11

� The �rst type is based on a rigid base polyhedron, which is modi�ed by

a number of constrained parameters which depend on a single variable v1.

There is also a scaling parameter that is independent from v1. Modifying the

value of v1 may change the shape of the model in a variety of ways. However,

the average distance of the vertices from the center must be invariant under

such modi�cations (otherwise calulations will be inaccurate, potentially in a

subtle way). The parameters for this type of model typically work together

to manipulate the angular components of the spherical vertex coordinates.

This type is best suited for models with a cubic point group. Models of this

type include the pyritohedral icosahedron and the elpasolite cuboctahedron.

� Some models have rigid components (e.g. vertically oriented regular poly-

gons), but are not altogether rigid. This includes the fulvalene and biphenyl

skeletons, among others. In these cases, the h̀ parameter type is useful for

constraining the vertical expansion of the rigid parts. However, to fully pre-

serve the shape of such a rigid part while allowing it to change size, the

value of the h̀ parameter must be coupled with that of a ẁ parameter. The

parameter values are linear functions of the variable v1 in these cases.

� The third type of model is entirely managed by a number of variables v1, v2,

etc. Each parameter tends to depend on more than one variable with this

type of model, which makes them the most computationally expensive mod-

els de�ned in Polynator. There is currently only one built-in example; the

truncated hexagonal trapezohedron, which requires constrained parameters

to keep its pentagonal faces planar.

4 Output Files

Output �les for all evaluated objects can be generated via Generate output �les.

They will be put into a subdirectory of the folder holding the input �les that were

evaluated. There are seven types of output �les, the generation of which can be

toggled in the Settings menu: two types of data tables, general output �les, atom

speci�c output �les, two types of minimal .cif �les and .log �les.

12

4.1 Data Tables (.csv)

Two data tables may be generated as single .csv �les which contain the most rele-

vant information about all atom arrangements and �tted models, respectively. The

real_atom_arrangements.csv �le contains the composition, volume and number

of atoms for each atom arrangement, as well as δ values referring to a the closest

line, plane, or sphere containing all model vectors (see section 5.5). This �le can

be generated without �tting any models. The model_�ts.csv �le includes the dis-

tortion value, the volumes of the convex hulls of atom arrangements and model

polyhedra, the averaged linear distance between paired atom and model vectors,

the radial and angular portions of said distance and the free and constrained pa-

rameter values for each �tted model.

4.2 General Output Files (.out)

General output �les are purely text-based. One such �le is generated for each

atom arrangement. It contains general information about the atom arrangement

at the top and a section with information about each individual �t after that.

These sections are separated from each other by wide horizontal lines. Each

section is further divided into paragraphs.

The paragraph at the very top should mostly be self-explanatory. It con-

tains general information for the evaluated atom arrangement, such as the

number of atoms, chemical composition and volume. The excentricity vector is

the distance between the central atom and the centroid of all atoms. The three

special δ values are explained in section 5.5. The second paragraph contains

a Python dictionary with all input instructions to document the setup for this

batch of results.

The �rst model-speci�c paragraph gives general information such as the

name, point group, distortion value and volume of the model polyhedron. The

third block holds some statistical information. This includes averages for the

linear di�erence measures from the previous block. The standard deviation given

for the length of the di�erence vector should not be confused with a quanti�cation

of measurement errors; Polynator's statistical errors are negligible (many tests

suggest the same is true for systematic errors). In addition, this block gives the δ

value for a central projection of all atom and model vectors onto a unit sphere and

13

for a cylindrical projection onto the model axis. The model constructor gives a

Python dictionary of the model belts and their parameters. For more information

on this entry, see sections 5.2 and 5.4. It might help to try out the custom model

construction window. Lastly, the .out �le lists the parameter values broken down

into free and constrained parameters. These can be quite useful to measure e.g.

the average height of a coordination environment or the torsion angle between

the hexagonal rings in a biphenyl unit. However, it is important to be aware of

prefactors! For instance, φ parameters often apply to two counterrotating belts,

as marked by a minus sign before one of the 'phi' parameter names in the 'model

constructor' block above. In that case, the value given for the φ parameter must

be doubled to obtain the correct torsion angle between the two belts.

4.3 Atom Speci�c Output Files (.aso)

These are structured similarly to the .out �les, but they contain information on

the level of individual atoms and model vertices. Each �le starts by listing the

coordinates of all �tted atoms and their distance from the central atom (or from

the centroid if a molecule or cage was evaluated). If Voronoi vertices were �tted,

a similar list is generated for them.

The �le continues with model-speci�c vectors and related information. All

coordinates given are fractional (the same format you would �nd in a .cif �le).

Each atom vector comes with a vertical component (parallel to the model axis)

and a horizontal component (orthogonal to the model axis). The 'angular

di�erence' refers to the angle a given ligand vector is displaced from its model

counterpart, from the perspective of the model center. 'Radial di�erence' means

the di�erence between the distances of that atom vector and its model counterpart

from the centroid. The 'angular di�erence' is just the angle between atom and

model vertex from the perpective of the centroid. It is split into the spherical

coordinate components 'phi di�erence' and 'theta di�erence'.

4.4 Minimal Coordinate Files (.cif)

The minimal .cif �les Polynator creates are intended mostly for visualization and

perhaps veri�cation in an external program. They have space group P1 regardless

of the original space group and contain only the atoms and model vertices involved

in the respective �t. There are two versions of these �les: fractional and cartesian.

14

Both are true to the size and proportions of the original coordination environment,

but only the fractional version is also true to the original unit cell. However,

that version may have unconvenient placement and overlaps between translated

coordination environments, which can be avoided by using the cartesian version.

4.5 Report Files (.log)

The .log �le mostly tries to record if something went wrong during the calculations.

If you observe unexpected behaviour, it might be worthwhile to look at this �le.

5 Mathematical Aspects

5.1 Overview

Figure 4: Flow chart of Polynators working process.

Polynator seeks to minimize the deviation δ, which is a least squares based metric

for the purely geometrical dissimilarity between a set of pairs of atom and model

vectors a⃗i and v⃗i de�ned as

δ = 100 ·

√∑
i |⃗ai − v⃗i|2∑
i |⃗ai − c⃗|2

. (1)

15

where c⃗ is the centroid of all atom vectors. A perfect �t between model and

atom vectors yields δ = 0. Larger values indicate stronger distortions, up to a

theoretical upper bound of δ = 100. In practice, values above δ ≈ 30 should

typically not be interpreted as validation for describing an atom arrangement

in terms of the �tted model. Values in the range 18 < δ < 30 indicate strong

distortions, while lower values correspond to moderate or small distortions.

The δ metric is closely related to the continuous symmetry measure (CSM)

originally de�ned by Zabrodsky, Peleg and Avnir [3]. Values can be converted to

and from the CSM-type S parameter via

S = 0.01 · δ2 or δ = 10 ·
√
S (2)

However, there are several reasons for preferring the δ parameter. First of all, even

though there are at least four types of values in the CSM family (CSM, CShM,

SOM and CCM), dynamic models are not adequately covered by any of them.

Secondly, CSM-type values increase approximately quadratically with increasing

distortion, while δ increases approximately linearly, making it much more intuitive.

Lastly, due to their quadratic nature, it is not uncommon for small distortions to

register only in the third or fourth decimal place of CSM-type values, making

them somewhat unhandy. With δ values, two decimal places are virtually always

su�cient to distinguish between a perfect �t by symmetry and a tiny distortion.

Figure 5: Measuring the value of δ for a regular triangular model (blue) �tted to three
atom vectors (black). Red dotted lines contribute to the numerator and grey dotted lines
to the denominator of equation 1.

To minimize δ, Polynator internally has to solve four main problems:

1. Pairing up atom and model vertices in an optimal fashion.

16

2. Finding the optimal coordinates to center the model at.

3. Finding the optimal orientation of the model. This has a reliable solution in

the Kabsch algorithm [5], which will not be discussed here.

4. Optimizing one or more parameters to obtain the ideal shape of the model.

Table 4: Mathematical symbols presented in this chapter do not always match their
counterparts in the code or the GUI. This table translates the code names.

symbol code name location in the code

a⃗ij vec_real ModelFit.belts_real (a list of lists of vectors)

v⃗ij vec_model ModelFit.belts_model (a list of lists of vectors)

M var_matrix get_covariance_matrix_eigenvectors function

m̂ model_axis ModelFit.model_axis

S HALF_SPHERE assign_to_belts_from_scratch function

q1 estimated_cost AtomArrangement.get_assignment_cost

_estimate method

q2 total_cost ModelFit.match_real_vecs_to_model method

Pij (various names) ModelFit.adjust...() methods

s 'sc' ModelFit.belt_dicts, ModelFit.dict_parameters

h̀, ẁ '>h', '>w' ModelFit.belt_dicts, ModelFit.dict_parameters

5.2 Pairing Up Atom and Model Vertices

This problem is in theory easily solved by just checking every permutation of

vertex pairings. However, since the number of permutations grows factorially

with the number of vertices and each 'checking' step comes with a signi�cant

computational cost, this approach was discarded. As far as we are aware, there is

no substitute that is determined to yield the perfect solution for any distribution

of atom vectors while allowing for a computationally cheap implementation.

However, some observations about the typical shape of coordination environ-

ments and simple molecules can be exploited to develop strategies that come

very close to this goal. Using these strategies, deviations from the optimal

solution of the assignment problem will sometimes occur if the atom arrangement

is unrecognizably dissimilar from the model, but are extremely unlikely if the

17

atom arrangement can reasonably be described as a distorted version of the model.

Figure 6: Separation of an anticuboctahedron into belts.

The �rst step towards this is to separate the model into subsections, which we

will call belts. This separation into belts is speci�c to each model. Belts can be

thought of as rings of vertices which lie perpendicular to the model axis (see �g.

??). The model axis is a high symmetry axis of the model (in some cases, the

choice may be ambiguous, e.g. either 3- or 4-axes are valid for models with a cubic

point group). Depending on the model, vertices are assigned to belts following

one out of several strategies. In all cases, the origin is set to the centroid of all

atoms which contribute to the �t.

For models representing coordination polyhedra or cages, vertices are as-

signed to belts based on strategy 1, which assumes that the atom arrangement

is roughly spherical. The atom vectors are projected onto the surface of a unit

sphere around the centroid. To assign each atom vector to a model belt, (not

yet to a speci�c vertex), a tentative model axis vector is chosen from among a

prede�ned set S of 92 vectors, which are distributed almost evenly on a sphere

surface (they correspond to the vertices of a fully capped truncated icosahedron).

The atom vectors are ranked according to their dot product with this axis

vector and the belts are �lled up in this order. This process is repeated for each

remaining axis vector in S. Models with a rotoinversion center or horizontal

mirror plane require only the 46 axis vectors corresponding to one hemisphere.

Duplicate belt assignments are discarded. The remainder is ranked according to

the estimated assignment cost q1. To obtain it, the model axis for each provisional

18

assignment is �rst re�ned as follows:

1. The centroid c⃗i of the atom vertices in each belt i is calculated and subtracted

from each atom vector a⃗ij in the respective belts to obtain an auxiliary vector

b⃗:

b⃗ij = a⃗ij − c⃗i . (3)

2. A covariance matrix M is constructed from the cartesian coordinates x, y

and z of the b⃗ij vectors:

M =

∑

ij x
2
ij

∑
ij xij · yij

∑
ij xij · zij∑

ij yij · xij

∑
ij y

2
ij

∑
ij yij · zij∑

ij zij · xij

∑
ij zij · yij

∑
ij z

2
ij

 . (4)

3. The unit eigenvector ofM with the smallest eigenvalue is chosen as the model

axis m̂.

4. The estimated cost q1 for this assignment can now be calculated as

q1 =
∑
i

|⃗ci × m̂|2 · ni +
∑
ij

(⃗aij · m̂)2 (5)

where ni is the number of vertices in belt i. The �rst term represents hor-

izontal displacements of the belts, the second vertical displacements of the

individual vertices within each belt.

The four belt assignments with the smallest cost q1 are evaluated further, the rest

is discarded.

Some models, for example those for the biphenyl and porphyrin skeletons,

do not work very well with strategy 1. Instead, atom vertices are assigned to their

belts based on the much simpler strategies 2 or 3, respectively (this is encoded

by a 'shape_type' entry in the dict_info of those model blueprints). Strategy

2 is designed to assign atom vectors to the belts of very prolate models. To do

this, the most prolate axis of the atom arrangement has to be identi�ed �rst.

Thankfully, this is easily achieved: it is the eigenvector with the largest eigenvalue

of the covariance matrix constructed from all atom vectors. The atom vertices

are then simply ranked according to their dot product with the prolate axis and

sequentially �lled into belts in this order. Strategy 3, designed for complex oblate

19

models, such as the porphyrin skeleton, works similarly. The most oblate axis of

the atom arrangement is obtained as the eigenvector with the smallest eigenvalue

of the covariance matrix constructed from all atom vectors. Atom vertices are

ranked according to their cross product with this axis and sequentially assigned

to belts.

Some models can be thought of as derivative of one or more other models.

For example, the tetragonal prism can be derived from the cube by adding a

degree of freedom (independent height and width parameters instead of a single

scaling parameter). For such a derivative model, the belt assignment step can

e�ectively be skipped if the parent model �ts su�ciently well. The belt assignment

is then simply inherited from the parent model according to instructions encoded

for each derivative model.

To pair up atom and model vectors, the combinations that maintain the

order of dihedral angles (up to one per atom) are ranked by their estimated cost

q2. To do this, the model is �rst rotated around m̂ so that the atom vector a⃗11

lies in the plane containing m̂ and an arbitrarily picked model vertex v⃗tare. For

each atom and model vector, the dihedral angle α in relation to v⃗0 is measured

(m̂ serves as the hinge). Atom and model vectors are then (separately) ordered

within the individual belts according to their dihedral angles and tentatively

paired up in this order. The estimated cost q2 is measured as

q2 =
∑
ij

|v⃗ij × m̂| · |∆αij| (6)

where ∆αij is the angular di�erence between the paired vectors with belt and

vector numbers i and j. This is repeated until each atom vector a⃗ij has been in

the α = 0 position once. The pairing scheme with the smallest q2 is evaluated

further, the rest is discarded.

5.3 Centering the Model

Each models in Polynator are de�ned such that the centroid of all model vertices

always rests on the origin. Due to the nature of the least squares �t, the centroid of

all �tted atom vectors must also be located at the origin to achieve an optimal �t.

20

The properties of the least squares �t entail that the optimal orientation and shape

of the model vertices can be computed independently from the centering. Thus, the

atom vectors could in principle be kept in place, correcting for the misalignment

of the two centroids only retroactively. However, Polynator translates the atom

vectors such that the two centroids coincide before starting the �tting procedure.

5.4 Optimization of Shape Parameters

In the simplest case, the model is a rigid body and the only parameter to be

optimized is its size s. To do this, the length P of each each atom vector a⃗ij when

projected onto its corresponding model vector v⃗ij is aquired as

Pij = a⃗ij · v̂ij . (7)

If all model vectors have the same length, the problem can be solved analytically

by taking the arithmetic mean of all lengths P :

sopt =

∑
ij Pij∑
ij 1

. (8)

Otherwise it is solved by iteratively minimizing the sum of the squared di�erences

between |v⃗ij| and Pij. This is still very straightforward, as the corresponding

function is always a parabola, so there are no problems with local minima or

discontinuities. Sometimes, for example with the dynamic model of the fully

capped cube, there are two or more size parameters (one for the cube vertices,

the other for the caps). These can just be solved separately with the same methods.

Many models, such as dynamic prisms, antiprisms, pyramids..., require the

separate optimization of height and width parameters h and w (instead of a

single s parameter, not in addition). Thanks to the Pythagorean theorem, this is

easily done. To optimize h, instead of projecting the atom vectors onto the model

vectors, as was done before, they are projected onto the model axis m̂:

Pij = a⃗ij · m̂ . (9)

Similarly, to optimize w, they are projected onto the normal plane of m̂:

Pij = a⃗ij · n̂ij where n⃗ij = a⃗ij − (⃗aij · m̂) · m̂ . (10)

21

As with the s parameter, the optimal values of h and w can usually be obtained

analytically by computing the arithmetic mean of the P values. However,

there are the special variants h̀ and ẁ which may have di�erent proportionality

constants for di�erent belts. These, again, need to be solved iteratively.

Parameters φ for rotations (used e.g. in twisted prisms) are also straight-

forward, but computationally more expensive, as they require vector operations

during iterations. In each cycle of such an iteration, the model vectors are

incrementally rotated around m̂. Subsequently, the sum of the squared distances

between atom and model vectors is measured. If the �t deteriorated compared

to the last cycle, the increment is multiplied with −1
2
. Once the magnitude

of the increment falls below 10−(4+n), where n is the loop count of the overall

optimization (ModelFit.loop_count), the iteration is terminated. To make

the computation slightly more e�cient, the atom and model vectors are �rst

transformed into two-dimensional cartesian and polar coordinates, respectively

(as evident from the Pythagorean theorem, the component in the direction of

m̂ doesn't a�ect the result). In the built-in models, φ is always balanced by a

counterrotation φ∗ in a di�erent belt in order to minimize the dependence on the

model orientation.

There are also modulating versions of h, w and φ which allow the modelling of

normal mode 'vibrations' of orders higher than 0. As an example, a square is

modelled by a single belt containing four vertices, with a single w parameter.

By adding h̃, w̃ or φ̃, the disphenoid, rhombus or rectangle, respectively, can be

derived from it. Modulated parameters are not applied equally to all vertices in

a belt, but rather with a prefactor generated by a sinusoidal function (cos for h̃

and w̃, sin for φ̃). The frequency f and o�set σ of these functions are determined

when a model is de�ned and never changed or optimized. Hence, the value of

modulating parameters corresponds solely to the amplitude of the respective

sinusoidal function. The prefactor g for each vertex is obtained as a function of

its position p in an n-membered belt (belts are sorted according to the dihedral

angles of their member vertices around m̂, enumeration starts at 0):

g(p) =

h̃, w̃ → cos
(

2π·f ·(p+σ)
n

)
φ̃ → sin

(
2π·f ·(p+σ)

n

) (11)

22

The divergent choice of basic trigonometric functions may seem odd, but in

practice makes it easier to think about these, due to their transversal (h̃, w̃) and

longitudinal (φ̃) nature. Optimization of the modulating parameters follows the

same priciples as for their non-modulating counterparts.

Lastly, there is the option to bind multiple parameters to freely de�nable

functions of one or more newly de�ned variables, e�ectively constraining them.

This allows for models such as the elpasolite cuboctahedron, the pyritohedron

and pyritohedral icosahedron, as well as symmetry-preserving non-equilateral

versions of archimedean solids and more. Optimization of these variables always

involves an iterative process where each parameter bound to the variable is newly

calculated and applied to the model in each iteration.

After all shape parameters have been optimized, the orientation is adjusted

again, taking into account the new shape of the model. This process is repeated

for up to ten cycles or until the δ value ceases to improve by more than 0.000003

between cycles.

5.5 Generic Distortion Values

Figure 7: Measuring the value of δspherical (left) and δlinear (or δplanar, right). Red dotted
lines contribute to the numerator and grey dotted lines to the denominator of equation
1.

For each atom arrangement, Polynator calculates three generic distortion values:

δlinear, δplanar and δspherical. A 'model' for this kind of �t is not constrained by

speci�c proportions, but by an overall shape which must contain all its vertices.

These shapes are respectively a line, a plane and the surface of a sphere. The

most closely �tting line and plane normal are easily obtained as eigenvectors of

23

the covariance matrix of all atom vectors. For each atom vector, the correspond-

ing 'model vector' is the nearest point on that line or plane. For δspherical, the

most closely �tting sphere surface centered at the centroid has a radius equal to

the average distance of each atom vector from the centroid. Note that δspherical

does not necessarily refer to the most closely �tting sphere surface with freely se-

lected centering. This becomes obvious when evaluating the case of four randomly

distributed atom vectors: absent degenerate cases, it is always possible to �nd

a perfectly �tting sphere surface by centering it on the circumcenter of the four

vectors, which generally does not coincide with the centroid.

6 Navigating the Code

6.1 General Structure

Polynator is written in a loosely object-oriented style. While most of the code

consists of class de�nitions, there are also some global constants (located at the

beginning of the script) and independent functions (towards the end). There are

17 classes relevant to the backend and 15 other classes which manage the graphical

user interface (GUI). Other than the modules imported from the standard library,

all of the code is contained in the polynator_gui.py and polynator_main.py �les.

This short guide will ignore the GUI and focus exclusively on the backend.

6.2 Classes

The MainProcess class orchestrates the backend at the highest level. It holds gen-

eral information such as the user input and the blueprints used to construct models.

Its run_full method starts the process by instantiating Structure objects. Each of

these then parses one of the input �les provided by the user with its parse_cif or

parse_xyz methods. It performs symmetry operations on the raw atom vectors

to generate one or more coordination environments or molecules. The latter may

or may not be helped by the TopologicalKnife class, which connects atoms and

employs a large number of methods to �nd speci�c molecular subunits or cages

within the network. Each set of atoms is then further processed by an AtomAr-

rangement object instantiated by the MainProcess.create_atom_arrangements

method. An AtomArrangement object contains information about a single

molecule, coordination environment or Voronoi polyhedron and is responsible

24

for administering models to it. After retrieving the appropriate ModelPrecursor

containers from the MainProcess.dict_model_precursors dictionary, it starts to

assign the atom vectors to the belts of the �rst model with its assign_to_belts

method. Only after this assignment step is complete, a ModelFit object is

instantiated by the AtomArrangement.run_assignment method. The actual

�tting procedure is then carried out by this object.

Voronoi polyhedra are constructed by the VoronoiDiagram class and its

subordinate DelaunayTetrahedron, VoronoiPolyhedron and VoronoiFace classes

using a �ip-based incremental insertion algorithm for the construction of the dual

Delaunay tetrahedralization. Convex hulls are constructed by the ConvexHull

class and its subordinate ConvexFace class via a divide and conquer algorithm.

The information about each atom generated by the Structure class is stored in

Atom containers. The NetworkNode and Ring classes store connections between

atoms, which makes them useful to the TopologicalKnife class. To make the

process of connecting atoms more e�cient, the CellSubdivision class implements

a spatial hash, which is accesssed by the Structure and TopologicalKnife classes.

6.3 Global Constants

A notable constant is the rather large DICT_BLUEPRINTS, which has atom

counts as keys and lists of tuples as values. The tuples are referred to as blueprints.

They store all the information needed to construct the models. Each has three

entries, which are referred to as name, dict_info and belt_dicts, respectively.

DICT_CARVING_INSTRUCTIONS holds information utilized by the Topo-

logicalKnife class to carve various molecular subunits and cages out of a larger

network of atoms. Each set of instructions is encoded as a dictionary. Each such

dictionary (also found as the target_dict attribute of a TopologicalKnife object)

has a 'strategy' key. This strategy determines, which method or combination of

methods will be utilized by the TopologicalKnife.

DICT_SYMMETRY_RELATIONS encodes relationships between models.

This means mostly symmetry relations, but also other relations between topolog-

ically equivalent models with di�erent degrees of freedom (e.g. between a rigid

and a dynamic trigonal prism). It allows a derivative model to inherit its belt

25

assignment from a previously �tted parent model (not to be confused with class

inheritance). This is encoded in the encapsulated lists of lists of integers. Each

integer is the index of an atom vector in the �attened belts_real attribute of the

parent ModelFit object. If an entry is a 'same' string, the belts_real attribute of

the parent ModelFit may just be copied outright when constructing the derivative

ModelFit.

6.4 Utility Functions

The parse_math() function has the main purpose of processing the mathematical

expressions binding parameters to variables. This could also be done using

eval() or probably some function from a module, but the custom function allows

for dealing with �oating point issues (e.g. arccos(1.000000000000002) nested

somewhere in a mathematical expression).

The atom_search and blueprint_search functions process the raw strings

input by the user to translate them into atoms found in crystal structures and

valid model names, respectively. The majority of the other utility functions

implement vector algebra and special iterators.

6.5 Model Parameters

All parameter types other than 'sc' have a version with an '_init' su�x, which

signals a �xed parameter, as opposed to a free or dependent one. These '_init'

values are applied when the model prototypes are constructed by the ModelPre-

cursor.construct_prototype function. They are useful for the construction of many

rigid models, including the rigid base models for dynamic models with constrained

parameters. The modulating parameters described in section 4 go along with suf-

�xes '_frq' and '_o�' for the frequency and o�set of the sinusoidal wave function,

respectively. If a model requires more than one modulated parameter of the same

type in the same belt, the type name of the second parameter, as well as its '_frq'

and '_o�' supplements are pre�xed with an additional ' '. As discussed in sec-

tion 4, some models require multiple parameters to be constrained as a function

of a single variable. If a model blueprint contains such a 'parameter_bundle', it

is de�ned in the dict_info section, along with a 'bundle_var_ranges' dictionary,

which de�nes the domain of each bundle variable.

26

References

[1] D. Waroquiers, J. George, M. Horton, S. Schenk, K. A. Persson, G.-M.

Rignanese, X. Gonze, G. Hautier, Acta Crystallogr. B, 2020, 76, 683�695.

[2] M. O'Kee�e, Acta Crystallogr. A, 1979, 35, 772�775.

[3] H. Zabrodsky, S. Peleg, D. Avnir, J. Am. Chem. Soc., 1992, 114, 7843�7851.

[4] M. Pinsky, D. Avnir, Inorg. Chem., 1998, 37, 5575.

[5] W. Kabsch, Acta Crystallogr. A, 1976, 30, 513.

27

Appendix

Table 5: Point groups and variables for each model prede�ned in Polynator.

2 equidist. linear coordination ∞/mmm s1

psi-1 planar triangle mm2 s1

psi-2 tetrahedron mm2 s1

right angle mm2 s1

dynamic linear coordination ∞mm h1, h̀1

3 regular triangle 6m2 s1

isosceles triangle mm2 h1, w1

psi-1 tetrahedron 3m s1

psi-1 square mm2 s1

psi-1 trigonal pyramid 3m h1, w1

4 square 4/mmm s1

tetrahedron 43m s1

rectangle mmm w1, φ̃1

rhombus mmm w1, w̃1

disphenoid 42m h1, w1

trigonal pyramid 3m h1, w1

heterodisphenoid mm2 h1, w1, w2

twisted disphenoid 222 h1, w1, φ1

parallelogram 2/m w1, w̃1, φ̃1

trapezoid mm2 h1, w1, w2

psi-1 trigonal bipyramid mm2 h1, w1

5 regular pentagon 10m2 s1

equilat. trigonal bipyramid 6m2 s1

equilat. tetragonal pyramid 4mm s1

trigonal bipyramid 6m2 h1, w1

psi-1 octahedron 4mm s1

tetragonal pyramid 4mm h1, w1

rhombic pyramid mm2 h1, w1, w̃1

rectangular pyramid mm2 h1, w1, φ̃1

trigonal heterobipyramid 3m h1, h2, w1

28

6 regular hexagon 6/mmm s1

octahedron m3m s1

equilat. trigonal prism 6m2 s1

equilat. pentagonal pyramid 5m s1

trigonal antiprism 3m h1, w1

trigonal prism 6m2 h1, w1

bailar twist 6m2 s1, v1

trigonal frustum 3m h1, w1, w2

trigonal antifrustum 3m h1, w1, w2

twisted trigonal prism 32 h1, w1, φ1

tetragonal bipyramid 4/mmm h1, w1

pentagonal pyramid 5m h1, w1

psi-1 pentagonal bipyramid 5m h1, w1

didigonal scalenohedron 42m h1, w1, h̃1

rectangular bipyramid mmm h1, w1, φ̃1

rhombic bipyramid mmm h1, w1, w̃1

tetragonal heterobipyramid 4mm h1, h2, w1

parallelogrammic bipyramid 2/m h1, w1, w̃1, φ̃1

ethene unit mmm h1, v1

isosceles wedge mm2 h1, w1, w2, φ̃1

7 regular heptagon 14m2 s1

equilat. pentagonal bipyramid 10m2 s1

equilat. capped trigonal prism mm2 s1

hexagonal pyramid 6mm h1, w1

pentagonal bipyramid 10m2 h1, w1

capped isosceles wedge mm2 h1, h2, w1, w2, φ̃1

capped trigonal frustum 3m h1, h2, w1, w2

capped trigonal antifrustum 3m h1, h2, w1, w2

pentagonal heterobipyramid 5m h1, h2, w1

8 regular octagon 8/mmm s1

cube m3m s1

triangular dodecahedron 42m s1

gyrobifastigium 42m s1

equilat. bicapped trigonal prism mm2 s1

29

equilat. tetragonal antiprism 82m s1

rhombohedron 3m h1, w1

triakis tetrahedron 43m s1, s2

hexagonal bipyramid 6/mmm h1, w1

tetragonal prism 4/mmm h1, w1

tetragonal antiprism 82m h1, w1

tetragonal frustum 4mm h1, w1, w2

tetragonal antifrustum 4mm h1, w1, w2

twisted tetragonal prism 422 h1, w1, φ1

rhombic prism mmm h1, w1, w̃1

cuboid mmm h1, w1, φ̃1

anticuboid 42m h1, w1, φ̃1

bicapped trigonal prism 6m2 h1, h2, w1

bicapped trigonal antiprism 3m h1, h2, w1

bidisphenoid 42m h1, w1, w2, h̃1

twisted bidisphenoid 4 h1, w1, w2, h̃1, φ1

digonal gyrobicupola 42m h1, w1, w2

digonal orthobicupola mmm h1, w1, w2, φ̃1

biaugmented isosceles wedge mm2 h1, w1, w2, h̃1, w̃1, φ̃1

hexagonal heterobipyramid 6mm h1, h2, w1

parallelogrammic prism 2/m h1, w1, w̃1, φ̃1

parallelepiped 1 h1, w1, h̃1, h̃2, w̃1, φ̃1

9 equilat. tricapped trigonal prism 6m2 s1

tridiminished icosahedron 3m s1

equilat. capped cube 4mm s1

equilat. capped tetragonal antiprism 4mm s1

equilat. trigonal cupola 3m s1

tricapped trigonal prism 6m2 h1, w1, w2

trigonal cupola 3m h1, w1, w2, φ̃1

capped tetragonal frustum 4mm h1, h2, w1, w2

capped tetragonal antifrustum 4mm h1, h2, w1, w2

30

10 adamantane cage 43m s1

sphenocorona mm2 s1

equilat. bicapped tetragonal antiprism 82m s1

equilat. trans-bicapped cube 4/mmm s1

equilat. cis-bicapped cube mm2 s1

equilat. pentagonal prism 10m2 s1

equilat. pentagonal antiprism 5m s1

meta-bidiminished icosahedron mm2 s1

tetracapped octahedron 43m s1, s2

pentagonal prism 10m2 h1, w1

pentagonal antiprism 5m h1, w1

bicapped tetragonal prism 4/mmm h1, h2, w1

bicapped tetragonal antiprism 82m h1, h2, w1

capped trigonal cupola 3m h1, h2, w1, w2, φ̃1

fulvalene skeleton mmm h1, v1

11 11-Edshammar (from cubes) 6m2 s1

equilat. fac-tricapped cube 3m s1

equilat. mer-tricapped cube mm2 s1

monodiminished icosahedron 5m s1

equilat. capped pentagonal prism 5m s1

11-Edshammar (from rhombohedra) 6m2 h1, w1

fully capped trigonal prism 6m2 h1, h2, w1, w2

capped pentagonal frustum 5m h1, h2, w1, w2

capped pentagonal antifrustum 5m h1, h2, w1, w2

12 Platonic icosahedron 5m3 s1

Archimedean cuboctahedron m3m s1

equilat. bicapped pentagonal prism 10m2 s1

Archimedean truncated tetrahedron 43m s1

anticuboctahedron 6m2 s1

equilat. tetracapped cube 4/mmm s1

equilat. hexagonal prism 6/mmm s1

equilat. hexagonal antiprism 122m s1

elongated gyrobifastigium 42m s1

trigonal icosahedron 3m h1, w1, w2, h̃1

trigonal orthobicupola 6m2 h1, w1, w2, φ̃1

31

hexagonal prism 6/mmm h1, w1

hexagonal antiprism 122m h1, w1

trigonal gyrobicupola 3m h1, w1, w2

tetracapped tetragonal prism 4/mmm h1, w1, w2

bicapped pentagonal prism 10m2 h1, h2, w1

pyritohedral icosahedron m3 s1, v1

tetrahedral cuboctahedron 43m s1, v1

dynamic truncated tetrahedron 43m s1, v1

cuboctahedron [42m a]1 42m h1, w1, w2, h̃1, w̃1

cuboctahedron [42m b]1 42m h1, w1, w2, h̃1, φ̃1

cuboctahedron [mmm a]1 mmm h1, w1, w2, w̃1, φ̃1

cuboctahedron [mmm b]1 mmm h1, w1, w2, h̃1, w̃1, φ̃1

cuboctahedron [4mm] 4mm h1, h2, w1, w2, w3

cuboctahedron [4/m] 4/m h1, w1, w2, φ1, φ2

cuboctahedron [422] 422 h1, w1, w2, φ1

cuboctahedron [3m] 3m h1, h2, w1, w2, w3, φ̃1

cuboctahedron [3] 3 h1, w1, w2, h̃1, φ1, φ2

cuboctahedron [32] 32 h1, w1, w2, w̃1, φ1

bicapped pentagonal antiprism 5m h1, h2, w1

twisted biphenyl skeleton 222 h1, φ1, v1

13 equilat. pentacapped cube 4mm s1

capped hexagonal frustum 6mm h1, h2, w1, w2

capped hexagonal antifrustum 6mm h1, h2, w1, w2

14 rhombic dodecahedron m3m s1

rigid bicapped hexagonal antiprism 122m s1

fully capped cube m3m s1, s2

heptagonal prism 14m2 h1, w1

heptagonal antiprism 7m h1, w1

bicapped hexagonal prism 6/mmm h1, h2, w1

bicapped hexagonal antiprism 122m h1, h2, w1

fully capped tetragonal prism 4/mmm h1, h2, w1, w2

1) There are two distinct dynamic cuboctahedra for each of the point groups 42m and mmm,

labelled a and b, respectively.

32

15 rigid tricapped trigonal biprism 6m2 s1

tricapped ditrigonal prism 6m2 h1, w1, w2, φ̃1

tricapped trigonal biprism 6m2 h1, h2, w1, w2, w3

pentacapped pentagonal prism 10m2 h1, w1, w2

16 disphenocingulum 42m s1

equilat. snub tetragonal antiprism 82m s1

rigid tetracapped truncated tetrahedron 43m s1

octagonal prism 8/mmm h1, w1

octagonal antiprism 162m h1, w1

dynamic tetracapped truncated tetrahedron 43m s1, s2, v1

17 fully capped pentagonal prism 10m2 h1, h2, w1, w2

18 equilat. elongated trigonal orthobicupola 6m2 s1

equilat. elongated trigonal gyrobicupola 3m s1

equilat. gyroelongated trigonal bicupola 32 s1

hexacapped cuboctahedron m3m s1, s2

enneagonal prism 18m2 h1, w1

enneagonal antiprism 9m h1, w1

hexacapped hexagonal prism 6/mmm h1, w1, w2

dynamic elongated rhombic dodecahedron 4/mmm h1, h̀1, ẁ1

18-crown-6 skeleton 3m w1, h̃1, h̃2, w̃1, φ̃1

20 Platonic dodecahedron 5m3 s1

pyritohedron m3 s1, v1

faceted pyritohedron m3 s1, s2, v1

fully capped hexagonal prism 6/mmm h1, h2, w1, w2

24 Archimedean truncated octahedron m3m s1

Archimedean rhombicuboctahedron m3m s1

Archimedean truncated cube m3m s1

Archimedean snub cube 432 s1

equilat. elongated tetragonal gyrobicupola 82m s1

rigid porphyrin skeleton 4/mmm s1

dynamic rhombicuboctahedron m3m s1, v1

dynamic truncated octahedron m3m s1, v1

dynamic truncated cube m3m s1, v1

dynamic porphyrin skeleton 4/mmm s1, s2, v1

truncated hexagonal trapezohedron 122m v1, v2, v3

33

26 deltoidal icositetrahedron m3m s1

fully capped cuboctahedron m3m s1, s2, s3

28 rigid truncated triakis tetrahedron 43m s1

dynamic truncated triakis tetrahedron 43m s1, v1

30 Archimedean icosidodecahedron 5m3 s1

equilat. pentagonal orthobirotunda 10m2 s1

hexacapped dynamic truncated cube m3m s1, s2, v1

32 equilat. chamfered cube m3m s1

rhombic triacontahedron 5m3 s1

chamfered cube m3m s1, s2, v1

fully capped Platonic dodecahedron 5m3 s1, s2

38 pentagonal icositetrahedron 432 s1

48 Archimedean truncated cuboctahedron m3m s1

faujasite supercage 43m s1

60 Archimedean truncated icosahedron 5m3 s1

34

