
User Manual for Polynator 1.6

Contents

1 Introduction 1

2 Getting Started 1

3 Mathematical Aspects 2

3.1 Overview . 2

3.2 Pairing Up Atom and Model Vertices 4

3.2.1 The Assignment Problem . 4

3.2.2 Geometrical Solutions . 5

3.2.3 Graph Theoretical Solution 8

3.3 Centering the Model . 9

3.4 Optimization of Shape Parameters 9

3.5 Generic Distortion Values . 12

3.6 Convex Hull and Minimal Bounding Sphere 13

3.7 Graph Tracing . 14

4 Using Polynator 16

4.1 The Graphical User Interface (GUI) 16

4.2 Establishing Atomic Bonds . 18

4.3 Coordination Environments . 20

4.4 Molecules and Cages . 23

4.5 Graph Tracing . 24

4.6 Selecting Speci�c Models . 25

4.7 Setting a Model Axis . 26

4.8 The Settings Menu . 26

4.9 The Custom Model Construction Menu 27

4.10 The Custom Model Relations Menu 29

4.11 The Custom Graph Templates Menu 30

5 Output Files 31

5.1 Data Tables (.csv) . 32

5.2 General Output Files (.out) . 32

5.3 Atom Speci�c Output Files (.aso) 33

1

5.4 Minimal Coordinate Files (.cif) . 34

5.5 Report Files (.log) . 34

6 Navigating the Code 34

6.1 General Structure . 34

6.2 Classes . 34

6.3 Global Constants . 36

6.4 Model Parameters . 37

1 Introduction

Polynator is a computer program written in Python. Its main purpose is to �t

models to atom arrangements. An atom arrangement is a set of atoms found in

a crystal structure, typically a coordination environment or a molecule. A model

represents a speci�c geometric shape, e.g. an octahedron or a pentagonal prism.

Models are de�ned by a set of vertices which may be manipulated according to

a set of rules speci�c to each model. In the context of computations, atoms and

model vertices are internally represented by vectors. A model may be rigid or

dynamic. Rigid models have �xed proportions, meaning they can be rotated and

resized, but not deformed in any other way. Dynamic models can be deformed

in a variety of ways (e.g. stretching, twisting, puckering...). Fitting a model to

an atom arrangement allows for the quanti�cation of the distortion of that atom

arrangement with respect to that model. This allows the user to more precisely

describe a coordination environment or molecule, compare distortions between

similar structures, or �nd trends within structural families. Polynator can also

be utilized to construct Voronoi polyhedra and to calculate angles, volumes and

surface areas. In addition, it provides a convenient way to �nd and extract speci�c

structural units from larger crystal structures. This documentation is intended to

assist the user in navigating these features. It also gives an overview of the code

structure and the mathematical methods fueling the program.

2 Getting Started

Polynator is available via free download from https://www.iac.uni-

stuttgart.de/forschung/akniewa/downloads/. This website currently gives

the options of downloading the Python script or a .zip folder containing a Win-

dows executable �le. The Python version provides full access to the source code.

It requires Python 3.9 or a newer version of Python 3 (slightly older versions

might be �ne too). The graphical user interface is accessed by running the

polynator_gui.py script. The main program is contained in polynator_main.py

and can be run independently. All imported modules are part of the Python

standard library. The executable version requires Windows 10 or a newer version

of Microsoft Windows. To get started with the latter, unpack the .zip folder

wherever you would store applications on your computer. Then start Polynator by

executing polynator.exe. The folder extracted from the .zip �le is self-contained,

1

it doesn't create con�guration �les anywhere else on your computer. Therefore,

you can uninstall Polynator by simply deleting the folder. For convenience, you

may want to create a shortcut to polynator.exe somewhere easy to reach on your

computer. Polynator comes with a graphical user interface (GUI). The main

window is created when starting the program. With the .exe version in particular,

this may take a few seconds. If the window doesn't appear in the tab bar after 10

seconds, check if the system requirements are met and that no changes have been

made to the folder.

3 Mathematical Aspects

3.1 Overview

Figure 1: Flow chart of Polynators working process.

Polynator seeks to minimize the deviation δ, which is a least squares based metric

for the purely geometrical dissimilarity between a set of pairs of atom and model

vectors a⃗i and v⃗i de�ned as

δ = 100 ·

√∑
i |⃗ai − v⃗i|2∑
i |⃗ai − c⃗|2

. (1)

2

where c⃗ is the centroid of all atom vectors. A perfect �t between model and

atom vectors yields δ = 0. Larger values indicate stronger distortions, up to a

theoretical upper bound of δ = 100. In practice, values above δ ≈ 30 should

typically not be interpreted as validation for describing an atom arrangement

in terms of the �tted model. Values in the range 18 < δ < 30 indicate strong

distortions, while lower values correspond to moderate or small distortions.

The δ metric is closely related to the continuous symmetry measure (CSM)

originally de�ned by Zabrodsky, Peleg and Avnir [3]. Values can be converted to

and from the CSM-type S parameter via

S = 0.01 · δ2 or δ = 10 ·
√
S (2)

However, there are several reasons for preferring the δ parameter. First of all, even

though there are at least four types of values in the CSM family (CSM, CShM,

SOM and CCM), dynamic models are not adequately covered by any of them.

Secondly, CSM-type values increase approximately quadratically with increasing

distortion, while δ increases approximately linearly, making it much more intuitive.

Lastly, due to their quadratic nature, it is not uncommon for small distortions to

register only in the third or fourth decimal place of CSM-type values, making

them somewhat unhandy. With δ values, two decimal places are virtually always

su�cient to distinguish between a perfect �t by symmetry and a tiny distortion.

Figure 2: Measuring the value of δ for a regular triangular model (blue) �tted to three
atom vectors (black). Red dotted lines contribute to the numerator and grey dotted lines
to the denominator of equation 1.

To minimize δ, Polynator internally has to solve four main problems:

1. Pairing up atom and model vertices in an optimal fashion.

3

2. Finding the optimal coordinates to center the model at.

3. Finding the optimal orientation of the model. This has a reliable solution in

the Kabsch algorithm [5], which will not be discussed here.

4. Optimizing one or more parameters to obtain the ideal shape of the model.

Table 1: Mathematical symbols presented in this chapter do not always match their
counterparts in the code or the GUI. This table translates the code names.

symbol code name location in the code

a⃗ij vec_real ModelFit.belts_real (a list of lists of vectors)

v⃗ij vec_model ModelFit.belts_model (a list of lists of vectors)

M var_matrix get_covariance_matrix_eigenvectors function

m̂ model_axis ModelFit.model_axis

S HALF_SPHERE assign_to_belts_from_scratch function

q1 estimated_cost AtomArrangement.get_assignment_cost

_estimate method

q2 total_cost ModelFit.match_real_vecs_to_model method

Pij (various names) ModelFit.adjust...() methods

s 'sc' ModelFit.belt_dicts, ModelFit.dict_parameters

h̀, ẁ '>h', '>w' ModelFit.belt_dicts, ModelFit.dict_parameters

3.2 Pairing Up Atom and Model Vertices

3.2.1 The Assignment Problem

This problem is in theory easily solved by just checking every permutation of

vertex pairings. However, since the number of permutations grows factorially

with the number of vertices and each 'checking' step comes with a signi�cant

computational cost, this approach was discarded. As far as we are aware, there is

no substitute that is determined to yield the perfect solution for any distribution

of atom vectors while allowing for a computationally cheap implementation.

However, some observations about the typical shape of coordination environ-

ments and simple molecules can be exploited to develop strategies that come

very close to this goal. Using these strategies, deviations from the optimal

solution of the assignment problem will sometimes occur if the atom arrangement

is unrecognizably dissimilar from the model, but are extremely unlikely if the

4

atom arrangement can reasonably be described as a distorted version of the model.

3.2.2 Geometrical Solutions

Figure 3: Separation of an anticuboctahedron into belts.

The �rst step towards this is to separate the model into subsections, which

we will call belts. This separation into belts is speci�c to each model. Belts

can be thought of as rings of vertices which lie perpendicular to the model

axis (see �g. 3). The model axis is a high symmetry axis of the model

(in some cases, the choice may be ambiguous, e.g. either three- or fourfold

rotation axes are valid for models with a cubic point group). Depending on

the model, vertices are assigned to belts following one out of several strategies.

In all cases, the origin is set to the centroid of all atoms which contribute to the �t.

For models representing coordination polyhedra or cages, vertices are as-

signed to belts based on strategy 1, which assumes that the atom arrangement

is roughly spherical. The atom vectors are projected onto the surface of a unit

sphere around the centroid. To assign each atom vector to a model belt, (not

yet to a speci�c vertex), a tentative model axis vector is chosen from among a

prede�ned set S of 92 vectors, which are distributed almost evenly on a sphere

surface (they correspond to the vertices of a fully capped truncated icosahedron).

The atom vectors are ranked according to their dot product with this axis

vector and the belts are �lled up in this order. This process is repeated for each

remaining axis vector in S. Models with a rotoinversion center or horizontal

5

mirror plane require only the 46 axis vectors corresponding to one hemisphere.

Duplicate belt assignments are discarded. The remainder is ranked according to

the estimated assignment cost q1. To obtain it, the model axis for each provisional

assignment is �rst re�ned as follows:

1. The centroid c⃗i of the atom vertices in each belt i is calculated and subtracted

from each atom vector a⃗ij in the respective belts to obtain an auxiliary vector

b⃗:

b⃗ij = a⃗ij − c⃗i . (3)

2. A covariance matrix M is constructed from the cartesian coordinates x, y

and z of the b⃗ij vectors:

M =


∑

ij x
2
ij

∑
ij xij · yij

∑
ij xij · zij∑

ij yij · xij
∑

ij y
2
ij

∑
ij yij · zij∑

ij zij · xij
∑

ij zij · yij
∑

ij z
2
ij

 . (4)

3. The unit eigenvector ofM with the smallest eigenvalue is chosen as the model

axis m̂.

4. The estimated cost q1 for this assignment can now be calculated as

q1 =
∑
i

|⃗ci × m̂|2 · ni +
∑
ij

(⃗aij · m̂)2 (5)

where ni is the number of vertices in belt i. The �rst term represents hor-

izontal displacements of the belts, the second vertical displacements of the

individual vertices within each belt.

The four belt assignments with the smallest cost q1 are evaluated further, the rest

is discarded.

Some models, for example those for the biphenyl and porphyrin skeletons,

do not work very well with strategy 1. Instead, atom vertices are assigned to their

belts based on the much simpler strategies 2 or 3, respectively (this is encoded

by a 'shape_type' entry in the dict_info of those model blueprints). Strategy

2 is designed to assign atom vectors to the belts of very prolate models. To do

this, the most prolate axis of the atom arrangement has to be identi�ed �rst.

Thankfully, this is easily achieved: it is the eigenvector with the largest eigenvalue

6

of the covariance matrix constructed from all atom vectors. The atom vertices

are then simply ranked according to their dot product with the prolate axis and

sequentially �lled into belts in this order. Strategy 3, designed for complex oblate

models, such as the porphyrin skeleton, works similarly. The most oblate axis of

the atom arrangement is obtained as the eigenvector with the smallest eigenvalue

of the covariance matrix constructed from all atom vectors. Atom vertices are

ranked according to their cross product with this axis and sequentially assigned

to belts.

Some models can be thought of as derivative of one or more other models.

For example, the tetragonal prism can be derived from the cube by adding a

degree of freedom (independent height and width parameters instead of a single

scaling parameter). For such a derivative model, the belt assignment step can

e�ectively be skipped if the parent model �ts su�ciently well. The belt assignment

is then simply inherited from the parent model according to instructions encoded

for each derivative model.

To pair up atom and model vectors, the combinations that maintain the

order of dihedral angles (up to one per atom) are ranked by their estimated cost

q2. To do this, the model is �rst rotated around m̂ so that the atom vector a⃗11
lies in the plane containing m̂ and an arbitrarily picked model vertex v⃗tare. For

each atom and model vector, the dihedral angle α in relation to v⃗0 is measured

(m̂ serves as the hinge). Atom and model vectors are then (separately) ordered

within the individual belts according to their dihedral angles and tentatively

paired up in this order. The estimated cost q2 is measured as

q2 =
∑
ij

|v⃗ij × m̂| · |∆αij| (6)

where ∆αij is the angular di�erence between the paired vectors with belt and

vector numbers i and j. This is repeated until each atom vector a⃗ij has been in

the α = 0 position once. The pairing scheme with the smallest q2 is evaluated

further, the rest is discarded.

7

3.2.3 Graph Theoretical Solution

A graph is a set of vertices which are connected by a set of edges. The graph

of an atom arrangement refers to the set of atoms (the vertices) in that arrange-

ment which are connected by bonds (the edges). Geometric information, such as

distances and angles, is ignored in this context once bonds between atoms have

been established. An automorphism is any permutation of the vertices of a graph

that preserves the connectivity of the graph (see �g 4). Provided that the graph

of an atom arrangement is isomorphic (equivalent) to the graph of a given model,

the vertices can be paired up in a typically very limited number of permutations.

More speci�cally, the number of required permutations is at most the order of

the automorphism group of the graph. The rotation group of the model divides

the automorphism group into cosets. Only one element from each of these cosets

needs to be evaluated, as the others are congruent. As a result, most models

representing polyhedra require only two permutations, one corresponding to the

identity and the other to an inversion or re�ection. Models of regular polygons, as

well as chiral polyhedron models such as the snub cube, require only the identity.

However, models representing molecules with tree-like branching tend to have a

number of automorphisms that do not correspond to rotational symmetry. For

example, the graph of the model for a ψ1-pentagonal bipyramid is a star with six

leaves (see �g 4). Its automorphism group has the order 6! = 720. This number

can be divided by the order of the rotation group of the model to obtain 6!
5
= 144

vertex permutations, no two of which can be superimposed onto each other by

rotating the model.

Figure 4: Some vertex permutations of the model of a ψ1-pentagonal bipyramid, with (a)
representing the identity permutation. All of these, except for (b), are automorphisms of
the model graph. Permutation (c) is equivalent to (a) via rotation by 72 ◦. Permutation
(d) is equivalent to (a) via re�ection, but not congruent to (a). Permutation (e) is
one of many automorphisms of the model graph which do not correspond to geometric
symmetries of the model.

8

3.3 Centering the Model

Each models in Polynator are de�ned such that the centroid of all model vertices

always rests on the origin. Due to the nature of the least squares �t, the centroid of

all �tted atom vectors must also be located at the origin to achieve an optimal �t.

The properties of the least squares �t entail that the optimal orientation and shape

of the model vertices can be computed independently from the centering. Thus, the

atom vectors could in principle be kept in place, correcting for the misalignment

of the two centroids only retroactively. However, Polynator translates the atom

vectors such that the two centroids coincide before starting the �tting procedure.

3.4 Optimization of Shape Parameters

In the simplest case, the model is a rigid body and the only parameter to be

optimized is its size s. To do this, the length P of each each atom vector a⃗ij when

projected onto its corresponding model vector v⃗ij is aquired as

Pij = a⃗ij · v̂ij . (7)

If all model vectors have the same length, the problem can be solved analytically

by taking the arithmetic mean of all lengths P :

sopt =

∑
ij Pij∑
ij 1

. (8)

Otherwise it is solved by iteratively minimizing the sum of the squared di�erences

between |v⃗ij| and Pij. This is still very straightforward, as the corresponding

function is always a parabola, so there are no problems with local minima or

discontinuities. Sometimes, for example with the dynamic model of the fully

capped cube, there are two or more size parameters (one for the cube vertices,

the other for the caps). These can just be solved separately with the same methods.

Many models, such as dynamic prisms, antiprisms, pyramids..., require the

separate optimization of height and width parameters h and w (instead of a single

s parameter, not in addition to it). Thanks to the Pythagorean theorem, this is

easily done. To optimize h, instead of projecting the atom vectors onto the model

9

vectors, as was done before, they are projected onto the model axis m̂:

Pij = a⃗ij · m̂ . (9)

Similarly, to optimize w, they are projected onto the normal plane of m̂:

Pij = a⃗ij · n̂ij where n⃗ij = a⃗ij − (⃗aij · m̂) · m̂ . (10)

As with the s parameter, the optimal values of h and w can usually be obtained

analytically by computing the arithmetic mean of the P values. However,

there are the special variants h̀ and ẁ which may have di�erent proportionality

constants for di�erent belts. These, again, need to be solved iteratively.

Parameters φ for rotations (used e.g. in twisted prisms) are also straight-

forward, but computationally more expensive, as they require vector operations

during iterations. In each cycle of such an iteration, the model vectors are

incrementally rotated around m̂. Subsequently, the sum of the squared distances

between atom and model vectors is measured. If the �t deteriorated compared

to the last cycle, the increment is multiplied with −1
2
. Once the magnitude

of the increment falls below 10−(4+n), where n is the loop count of the overall

optimization (ModelFit.loop_count), the iteration is terminated. To make

the computation slightly more e�cient, the atom and model vectors are �rst

transformed into two-dimensional cartesian and polar coordinates, respectively

(as evident from the Pythagorean theorem, the component in the direction of

m̂ doesn't a�ect the result). In the built-in models, φ is always balanced by a

counterrotation φ∗ in a di�erent belt in order to minimize the dependence on the

model orientation.

There are also modulating versions of h, w and φ, which allow the modelling of

normal mode 'vibrations' of orders higher than 0. As an example, a square is

modelled by a single belt containing four vertices, with a single w parameter.

By adding h̃, w̃ or φ̃, the disphenoid, rhombus or rectangle, respectively, can be

derived from it. Modulated parameters are not applied equally to all vertices in

a belt, but rather with a prefactor generated by a sinusoidal function (cos for h̃

and w̃, sin for φ̃). The frequency f and o�set σ of these functions are determined

when a model is de�ned and never changed or optimized. Hence, the value of

modulating parameters corresponds solely to the amplitude of the respective

10

sinusoidal function. The prefactor g for each vertex is obtained as a function of

its position p in an n-membered belt (belts are sorted according to the dihedral

angles of their member vertices around m̂, enumeration starts at 0):

g(p) =

h̃, w̃ → cos
(

2π·f ·(p+σ)
n

)
φ̃ → sin

(
2π·f ·(p+σ)

n

) (11)

The divergent choice of basic trigonometric functions may seem odd, but in

practice makes it easier to think about these, due to their transversal (h̃, w̃) and

longitudinal (φ̃) nature. Optimization of the modulating parameters follows the

same priciples as for their non-modulating counterparts.

Lastly, there is the option to bind multiple parameters to freely de�nable

functions of one or more newly de�ned variables, e�ectively constraining them.

This allows for models such as the elpasolite cuboctahedron, the pyritohedron

and pyritohedral icosahedron, as well as symmetry-preserving non-equilateral

versions of archimedean solids and more. Optimization of these variables always

involves an iterative process where each parameter bound to the variable is newly

calculated and applied to the model in each iteration.

After all shape parameters have been optimized, the orientation is adjusted

again, taking into account the new shape of the model. This process is repeated

for up to ten cycles or until the δ value ceases to improve by more than 0.000003

between cycles.

11

3.5 Generic Distortion Values

Figure 5: Measuring the value of δspherical (left) and δlinear (or δplanar, right). Red dotted
lines contribute to the numerator and grey dotted lines to the denominator of equation
1.

For each atom arrangement, Polynator calculates three generic distortion values:

δlinear, δplanar and δspherical. A 'model' for this kind of �t is not constrained by

speci�c proportions, but by an overall shape which must contain all its vertices.

These shapes are respectively a line, a plane and the surface of a sphere. The

most closely �tting line and plane normal are easily obtained as eigenvectors of

the covariance matrix of all atom vectors. For each atom vector, the correspond-

ing 'model vector' is the nearest point on that line or plane. For δspherical, the

most closely �tting sphere surface centered at the centroid has a radius equal to

the average distance of each atom vector from the centroid. Note that δspherical
does not necessarily refer to the most closely �tting sphere surface with freely se-

lected centering. This becomes obvious when evaluating the case of four randomly

distributed atom vectors: absent degenerate cases, it is always possible to �nd

a perfectly �tting sphere surface by centering it on the circumcenter of the four

vectors, which generally does not coincide with the centroid.

12

3.6 Convex Hull and Minimal Bounding Sphere

Figure 6: Two-dimensional convex hull (left) and minimal bounding circle (right) of a
set of circles with a variety of radii. Circles are colored red if they lie on the respective
boundary and blue otherwise.

Polynator is capable of computing the convex hull and the minimal bounding

sphere of an atom arrangement or model. The convex hull is de�ned as the

smallest convex shape which encompasses a set of points, or, in this case, atomic

coordinates. It is used for �nding the bounding edges, which are used as graph

edges for coordination environments constructed with the gap method and

�xed number options. It also gives a useful metric for the volume of an atom

arrangement, especially in inorganic crystal structures.

The minimal bounding sphere is de�ned as the smallest sphere containing

a set of objects. It is primarily useful as a metric for the size of small or relatively

rigid molecules. Polynator computes the minimal bounding sphere treating

atoms not as points, but as spheres. Each atom sphere is centered at the atomic

coordinates and its radius is the atomic radius (as given in the atomic radii panel

or otherwise taken from a default table). The volume of the minimal bounding

sphere is typically much greater than that of the convex hull. A modi�ed, iterative

version of Welzl's algorithm [1] is used to determine the center and radius of

the minimal bounding sphere. According to [2], it should technically be possible

to construct a set of spheres for which this algorithm fails, but we have never

observed this in practice.

13

3.7 Graph Tracing

Figure 7: Primitive graph types used by Polynator. Universal vertices are highlighted in
red.

As explained in section 3.2.3, Graph theory is a �eld of mathematics concerned

with networks of vertices which are connected by edges. Polynator uses it to

identify and isolate speci�c subgraphs in graphs of larger molecules or in�nite

frameworks. For this purpose, it constructs a simple, undirected graph by

connecting the atoms in a given structure via one of the methods discussed in

section 4.2. The graph tracing algorithm then �nds all crystallographically unique

subgraphs in this full graph that are isomorphic to the speci�ed subgraph. In

other words, it implements a substructure search without preceeding knowledge

of the structures to be searched. Fig. 7 shows a number of primitive graph types

which can be traced directly using atoms as vertices. If the target has a universal

vertex, each unique atom in the crystal structure is checked by evaluating all

combinations of the appropriate number of neighbors of that atom. If the strategy

aims at a star, propeller or complete graph, this evaluation is purely based on the

neighbor vertex degrees. For slices, wheels and hourglasses, in addition to that,

it is necessary to check how many disjoint subgraphs would result if the traced

graph would be isolated and the universal vertex removed. If the target is a chain

or ring, candidates are obtained by iteratively adding members starting at each

unique atom.

14

More complex graphs are traced in a bottom-up, multi-step process, with

each step using the subgraphs found in previous steps as vertices. For example,

Polynator uses a two-step process to search the graph of a crystal structure1 for all

subgraphs constituting truncated tetrahedra. In the �rst step, all six-membered

rings are identi�ed. These rings are treated as vertices in the second step. An edge

is established between any two such vertices if the corresponding six-membered

rings share exactly two atoms. The algorithm then looks for tetrahedra (complete

graphs with four vertices) in the abstract graph constructed this way. Each

�nding is checked by looking at the degree (number of next neighbors) of each

atom. In a truncated tetrahedron, each atom will have degree 3. No other graph

which can be traced this way has this property.

Unfortunately, it is not always su�cient to check only the atom degrees.

In some instances, as illustrated in �g. 8, compiling the degrees of all vertices

does not unambiguously identify the target graph. If this is the case, it is required

to check the shell IDs. This is done by iterating over all vertices in the candidate

subgraph, producing a list of numbers for each of them. This list contains the

number of vertices which are one edge away from the sample vertex, then the

number of vertices which are two edges away, and so on until each vertex in the

subgraph is registered. This yields a relatively compact identi�er which is not

always strictly unique to a graph, but in practice su�cient to di�erentiate between

graphs given that were traced from speci�c components using the bottom-up

method explained above.

1More precisely, an excerpt from a crystal structure, often a contiguous molecule or a 3× 3× 3
cell.

15

Figure 8: Shell IDs of the gyrobifastigium (left) and the orthobifastigium (right). The
vertices of each graph can be split into two equivalence classes, each containing four
vertices. The graphs can be distinguished by counting the number of vertices in a distance
of one, two or three edges from the yellow vertex. Those vertices are colored red, green
and blue, respectively.

4 Using Polynator

4.1 The Graphical User Interface (GUI)

Figure 9: Screenshot of the main window of the GUI.

The GUI comprises a total of �ve windows:

� The main window is opened when starting the program. It allows the user

to �nd atom arrangements, �t models and generate output �les.

16

� The settings window is accessible from the main window via the Settings

button. It allows for modi�cations to some aspects of the program.

� The custom model construction window allows the user to create new models.

It is accessible via Settings → customize: models.

� The symmetry relations window allows the user to de�ne new symmetry

relations between models. This can be useful to properly link up custom

models with existing models. Symmetry relations help to properly pair up

atoms with model vertices in some cases. This window is accessible via

Settings → customize: model relations.

� The custom graph template window allows the user to de�ne new graphs

to trace (see section 4.4). It is accessible via Settings → customize: graph

templates.

Each window contains several framed, labelled panels. Each window has a

screen panel at the top right position. On the main window, this allows for the

visualization of unit cells, graph templates, atom arrangements, models and �t

results by clicking on entries of the input �les, graph templates, preview atom

arrangements, preview models, or results panels, respectively. The visualizations

for models include the deformations caused by free parameters. These can be

toggled separately at the bottom left corner of the screen panel. Visualizations of

results show an overlay of atom arrangement and �tted model, each of which can

be hidden separately by clicking on the appropriate boxes at the top of the panel.

They also show the distances between paired atom and model vectors (∆/pm).

Each window has some space on the bottom for the display of comments

and error messages. When hovering over a widget, a comment about that widget

is displayed there in most cases. When clicking on an entry in the preview models

panel, some information about that model is displayed in the comment bar. These

features can be disabled in the settings menu.

To start working with the program, click on Load input �les on the bot-

tom left corner of the main window and locate any number of .cif or .xyz �les

on your computer. A click on Run starts Polynator's main process. However,

depending on the crystal structures and the type of atom arrangement which you

17

are interested in, some additional input may be required, as explained following

within this chapter.

4.2 Establishing Atomic Bonds

Constructing an atom arrangement to be evaluated generally requires connecting

those atoms by establishing bonds �rst. In the connectivity panel, the user may

choose from among �ve di�erent procedures to achieve this, although the gap ratio

and �xed number options are limited to coordination environments with ligands

surrounding a single central atoms.

� atomic radii : With this procedure, two atoms are connected if the distance

between them is smaller than the sum of their atomic radii. A �xed table of

covalent radii is used by default, but radii for individual atoms or elements

can be adjusted using the atomic radii panel.

� distance: Two atoms are connected if the distance between them is larger

than dmin and smaller than dmax. These values can be freely adjusted in the

lower part of the connectivity panel.

� Voronoi faces : This procedure is based on a Voronoi diagram. Two atoms

are connected if their Voronoi polyhedra share a face and the solid angle

subtended by that face is greater than the threshold Ωmin, which can be freely

adjusted in the lower part of the connectivity panel. A similar algorithm is

implemented in ChemEnv by Waroquiers et al. [1], who took inspiration

from O'Kee�e [2]. The Voronoi procedure generally yields reasonable results

for non-planar coordination environments. It is, however, by far the most

computationally expensive option.

� gap ratio: For this procedure, the atoms in the vicinity of a central atom are

sorted by their distance d from that central atom. If the gap in d between

two consecutive ligands is larger than a threshold value, this is considered the

beginning of a new coordination sphere. The threshold value is calculated

as the product of the smallest central�ligand distance times a coe�cient

with a default value of 0.2 (gap ratio). The gap method often allows for

easy access to any of the �rst few coordination spheres. However, for more

disordered coordination environments, where coordination spheres aren't as

neatly separated, it becomes much less useful.

18

� �xed number : The Voronoi method is based on the construction of a Voronoi

polyhedron around the central atom. Atoms are considered ligands if their

respective Voronoi polyhedron shares a face with the Voronoi polyhedron of

the central atom and this shared face subtends a solid angle greater than a

given threshold (20◦ by default) from the perspective of the central atom.

A similar algorithm is implemented in ChemEnv by Waroquiers et al. [1],

who took inspiration from O'Kee�e [2]. Note that all methods to select

ligands come with their own biases and will work better for some types of

coordination environments than for others. That said, the Voronoi method

generally yields reasonable results as long as the coordination environment

is non-planar.

Atomic radii allow for more selectivity when it comes to manually

de�ning a coordination environment. If atomic radii are de�ned for the

central and/or the ligand atoms and the sum of both is smaller than dmax, it

replaces dmax for this combination of atoms. To use atomic radii, �rst select

one or more entries in either central atom or ligand atom criterion box, then

enter a number into the respective set radius �eld and press enter.

19

4.3 Coordination Environments

Figure 10: Evaluating a coordination environment in Polynator. As a result of the user-
given atom criteria, only calcium and oxygen atoms are valid as central atoms and ligands,
respectively. Atoms are connected based on shared Voronoi faces. The central calcium
atom does not contribute to the �t and is therefore not shown on the screen.

The atom criteria panel allows for the selction of speci�c central and ligand atoms.

A valid entry may be an element symbol, a speci�c atom name (e.g. Ca1) or a

wildcard (e.g. '*M' for any metal, see tab. 2). Pre�xing an entry with a minus

sign (e.g. '-Ca1' or '-*M') excludes atoms that �t this entry. Pre�xing an entry

with an exclamation mark (e.g. ' !Ca1' or ' !*M') requires each atom arrangement

to contain at least one of each requested atom. You may also leave these �elds

empty, in which case all possible central and ligand atoms will be evaluated.

20

Table 2: Wildcards for groups of elements in the atom criteria panels (not case sensitive).

wildcard corresponding elements

* all elements

*Grn all elements in periodic table group n

*M all metals

*TM all transition metals (except rare earth metals and actinoids)

*RE all rare earth elements including Sc, Y, lanthanoids and actinoids.

*E all main group elements

*Ln lanthanoids including La and Lu

*An actinoids including Ac and Lr

*X typical anions (N, P, O, S, Se, F, Cl, Br and I)

By default, any atom with a distance from the central atom larger than dmin = 0.1

Å and smaller than dmax = 3.5 Å will qualify as a ligand. These values can

be freely adjusted in the connectivity panel. The same is true for the maximal

coordination number CNmax. If necessary, the most distant ligands in excess of

this number will be dropped until the number of ligands is equal to CNmax.

As alternatives to these simple cap values, the �t settings panel gives ac-

cess to two algorithms which select the ligands for a coordination environment

according to speci�c rules. The gap method looks for gaps in the distance

distribution of ligands from the central atom. If a gap between two consecutive

ligands is larger than a threshold value, this is considered the beginning of a

new coordination sphere. The threshold value is calculated as the product of the

smallest central�ligand distance times a coe�cient with a default value of 0.2 (gap

size). The gap method often allows easy access to any of the �rst few coordination

spheres. However, for more disordered coordination environments, it becomes

much less useful, as coordination spheres aren't as neatly separated anymore. The

Voronoi method is based on the construction of a Voronoi polyhedron around the

central atom. Atoms are considered ligands if their respective Voronoi polyhedron

shares a face with the Voronoi polyhedron of the central atom and this shared

face subtends a solid angle greater than a given threshold (20◦ by default) from

the perspective of the central atom. A similar algorithm is implemented in

ChemEnv by Waroquiers et al. [1], who took inspiration from O'Kee�e [2]. Note

that all methods to select ligands come with their own biases and will work better

21

for some types of coordination environments than for others. That said, the

Voronoi method generally yields reasonable results as long as the coordination

environment is non-planar.

Atomic radii allow for more selectivity when it comes to manually de�ning

a coordination environment. If atomic radii are de�ned for the central and/or

the ligand atoms and the sum of both is smaller than dmax, it replaces dmax for

this combination of atoms. To use atomic radii, �rst select one or more entries in

either central atom or ligand atom criterion box, then enter a number into the

respective set radius �eld and press enter.

Polynator will by default not include the central atom in the arrangement

of atoms which are to be �tted. To include the central atom, check the box �ts

include central atoms in the �t settings panel. In this case, the central atom

is �tted against the centroid of all atom vectors and will also factor into the

centering of the model. This panel also gives you the option to �t the vertices of

a Voronoi polyhedron constructed around the central atom instead of the actual

ligands.

22

4.4 Molecules and Cages

Figure 11: Analyzing a faujasite supercage in Polynator. Atoms are connected based on
their default atomic radii. The cage is formed by 48 SiO4 tetrahedra, each of which is
collapsed into its respective centroid by the 'reduce_star[4]' instruction. This results in
an in�nite framework of abstract vertices representing the tetrahedra. To isolate one
cage, Polynator is instructed to trace and select a 'faujasite_supercage' graph.

To �nd molecules and empty cages in a crystal structure, select the connect central

atoms option in the vertices to �t panel. This will connect the selected atoms based

on the chosen connectivity method. You may also choose from among a number

of graph tracing instructions to conveniently isolate a particular subunit from a

larger molecule or an in�nite framework of connected atoms. This allows you to

isolate e.g. a sodalite cage from the in�nite framework of silicon atoms in a zeolite

structure or to obtain all hexagonal rings from an organic molecule. While most

instructions will only look for one speci�c shape, some are intentionally designed to

�nd a slightly wider variety. For example, the instruction for fullerenes will �nd any

polyhedron with only pentagonal and hexagonal faces where each atom has degree

3. Keep in mind that appropriate atom connectivity rules are a prerequisite for

�nding the desired shape! Additional graph templates can be de�ned via Settings

→ graph templates.

23

4.5 Graph Tracing

Polynator is able to search a crystal structure for speci�c shapes on a graph

theoretical basis (see section 3.7). A prerequisite for this is the establishment

of bonds via the connectivity criteria panel. It is generally recommended to

use the atomic radii or distance options for this purpose. The connected atoms

form a graph, i.e. a set of vertices (atoms) connected by edges (bonds). This

graph, which comprises all generated atoms, can be traced in order to �nd

speci�c subgraphs, e.g. six-membered rings, icosahedra, supertetrahedra, etc.

Computation times for graph tracing operations can vary greatly, ranging from a

few milliseconds to several minutes on a regular PC. This is due to the number

of combinations scaling factorially with the density of connections in a crystal

structure. For this reason, it is advisable to make sure no unintended bonds are

created and no unintended atoms included.

To utilize this feature, enter the name of a target graph in the top right

�eld of the graph templates panel and con�rm your choice by pressing Enter, thus

transferring the request to the box below. A graph template instructs Polynator's

graph tracing algorithm to search the graphs of all input structures for unique

instances of the target subgraph. In the select mode, the atoms in a successfully

traced subgraph are processed as the central atoms in an atom arrangement. This

mode can also be used without checking the connect central atoms box. In that

case, a coordination environment is discarded if the ligands do not form any of the

speci�ed subgraphs. The block mode blocks successfully traced graphs so that no

subgraphs of a blocked graph can be found in the select mode. For example, when

tracing tetragonal pyramids in the select mode, if the crystal structure contains

an octahedron, the tracing algorithm will normally �nd a number of tetragonal

pyramids, since they are just octahedra with one of the vertices missing. However,

if there is a additional tracing request for octahedra (≡ trigonal antiprisms) in

the block mode, the pseudo-pyramids will be ignored. In the reduce mode, the

atoms in each successfully traced subgraph are collapsed into a single dummy

atom. This mode is applied before the others and the graph modi�ed this way is

then available for further tracing operations, including nested reductions. This

can help to simplify an atom arrangement, for example by reducing a tetrahedral

unit to a single pseudo-atom.

24

There are a number of parametrized graph types, which appear with a

question mark in square brackets in the dropdown menu of the graph templates

panel. To register such an entry, the question mark has to be replaced by an

integer. For chains and rings, the integer refers to the number of vertices. For

stars, it is the number of arms and for pyramids, bipyramids, hourglasses, prisms,

antiprisms and elongated bipyramids, it denotes the number of atoms in the

base. Supertetrahedra contain both central atoms and ligands of the constituent

tetrahedra, but no bonds between ligands (i.e. the basic building block is a

star[4]). The integer value is equivalent to the integer in the established notation

of T2, T3 etc. for supertetrahedra.

4.6 Selecting Speci�c Models

By default, all available models with the respectively appropriate number of ver-

tices will be �tted to each atom arrangement. The name of each model contains

some clarifying information in the square brackets. Platonic, Archimedean, Cata-

lan and Johnson solids, as well as uniform prisms and antiprisms are marked as

such. Dynamic models have their point group in square brackets if they represent

the set of all shapes with that point group and that topology. If 'rigid' or 'dy-

namic' is in square brackets, the model has a speci�c shape which is in most cases

explained in the comment line upon selecting such a model. The model criteria

panel allows you to select or exclude speci�c models. This panel will also accept

fragments of valid entries. This is in contrast to atom criterion panels discussed

above (otherwise 'N' would also �nd Nb, Ni, Zn etc.). A model may have more

than one valid name. These synonyms are displayed in the comment line upon

selecting a model in the model preview panel. Models can also be �ltered by tags

(see tab. 3) and by point group. You may select the '◦f_max' mode and enter

an integer to exclude all models with more degrees of freedom than that number

(not counting the three translational and two rotational degrees of freedom avail-

able to every model). For example, entering '1' will exclude all dynamic models,

leaving only rigid models such as the Platonic and Archimedean solids. The model

exclusion criteria in the Settings menu serves a similar function, but will exclude

unwanted models permanently.

25

Table 3: Model tags. In contrast to earlier versions, tags do not bestow any properties
onto a model. However, they may hint at speci�c behaviors. For example, models with
the #prolate or #oblate tags use strategies 2 and 3 for their assignment, respectively.

#rigid #dynamic #symmetry_aligned

#prolate #oblate #constrained_parameters

#molecule #cage #occupied

#pseudopolyhedron #chiral #essential

#equilateral #equidistant #planar

#regular_polygon #platonic #archimedean

#johnson #catalan #deltahedron

#fullerene #frank_kasper #capped_cube

#pyramid #bipyramid #heterobipyramid

#scalenohedron #prism #antiprism

#twisted_prism #frustum #antifrustum

#equator-capped_prism #axis-capped_prism #fully_capped_prism

#capped_frustum #capped_antifrustum

4.7 Setting a Model Axis

The user has the option of manually entering a model axis (see chapter 5, �g. 3).

This bypasses the automatic belt assignment step and forces Polynator to assign

belts according to this axis. This might be useful if an automatic belt assignment

appears suboptimal. An axis is entered in the form of fractional coordinates,

separated by commas or spaces. Unless the allow optimization box is ticked, this

axis will remain unchanged throughout the entire �tting process.

4.8 The Settings Menu

The settings menu comprises several options to customize Polynator's behaviour.

Changes made in this menu are remembered between sessions (they are stored in

.cfg �les located in the same folder as the main .exe or .py �le.). The available

options are as follows:

� Output behavior: Checkboxes allow the user to select which types of output

�les to produce. They also give the options to overwrite existing output �les,

to automatically produce outputs after every �t and to have only the best

�tting model for each atom arrangement appear in the output.

26

� Skipping redundant models: If a model turns out to �t perfectly, versions of

that model with additional degrees of freedom are not evaluated if the skip

redundant models box is checked.

� Fit metric: Distortion values can be displayed either in the native δ metric

or as CS(h)M-type values S (See section 3.1). The �tting procedure is not

altered by either choice, since both values are minimized in the same fashion.

� Point group notation: The user is given the choice to have point group

symbols displayed in Hermann-Mauguin (default) or Schön�ies notation.

� Maximal δ value: Provides an upper threshold for the distortion. Models

with a higher value do simply not appear in the output or the results box.

� Variable tax: The internal parameter δtaxed is obtained by adding a small

number (the variable tax) to the neutral δ value of a �tted model for each free

variable that model has. The value of δtaxed is not displayed anywhere, does

not appear in the output �les and does not in�uence the �tting procedure.

However, it is consulted when deciding on the best �tting model, it in�uences

the grayscale in the results box and determines the order of the list of models

in the .out �les.

� Model �lter: The active models panel makes it possible to customize the set

of models Polynator is actively using without having to specify preferences

in the model criteria panel of the main window every time. For example, if

'exotic' model polyhedra are generally not useful to you, it may be bene�cial

to enter and con�rm the exclusion criterion not #essential (see tab. 3 for a

list of such model tags).

4.9 The Custom Model Construction Menu

The custom model construction window is accessible via Settings → customize:

models. It allows for the creation of new models. The central component of this

is worked out in the belts panel, where the user can add or remove belts (see �g.

3) with a number of vertices n. There is also a number of optional parameters

which can be applied to a belt (see section 3.4). These parameters are perhaps

best understood by selecting various model polyhedra in the preview models box

at the bottom of the main window and observing them in the screen panel. Click

at the boxes at the bottom of that panel to toggle the e�ects of each parameter

27

separately. Alternatively, it is highly recommended to just play around and create

your own models. The comment panel at the bottom of the window will guide

you to some extent.

In order to guarantee a valid optimization procedure, some limits are placed on

the customizability of a model. Firstly, the centroid of each belt must rest on

the model axis. This means it is not possible to de�ne e.g. a capped pentagonal

pyramid (with the cap on a triangular face). Allowing imbalanced belts would

introduce a nontrivial optimization problem for the centering of the model. For

similar reasons, the centroid of all model vertices must rest on the origin at all

times. Secondly, the frequency of each modulated parameter in a belt must be

a product of one or more prime factors of the number of vertices n in that belt.

Otherwise, imbalances and coupling between the optimization of orientation and

shape would arise. If a model contains one or more s parameters, the average

distance from the origin to the model vertices scaled by that parameter must be

exactly 1.0. This ensures that the optimized parameter value matches the actual

size of the model. Finally, if a belt contains a φ parameter, there must either

be another belt with the same number of vertices and the same φ parameter

in counterrotation (e.g. '-phi1'), or another belt with a φ parameter entitled

'phi*'. This eliminates or at least minimizes coupling between the optimization of

orientation and those torsion angles, which would lead to slow convergence.

The new model also needs a name. Additionally, you have the option of assigning

a point group, a symmetry operation pertaining to the model axis, a list of parent

models, i.e. preexisting models with higher symmetry or fewer degrees of freedom,

as well as a list of search terms or categories for the new model. However, these

have no functionality other than being displayed at various points and allowing

the user to search for them.

Lastly, constraints ('bundles') may be added. These are useful for dynamic

models which do not have all of the degrees of freedom their point group would al-

low. De�ning these is not always a simple task and may require some calculations.

Some guidelines will be given here, but it is recommended to look at existing

models with constrained parameters (They all share the #constrained_parameters

tag). There are three types of models with constrained parameters:

28

� The �rst type is based on a rigid base polyhedron, which is modi�ed by

a number of constrained parameters which depend on a single variable v1.

There is also a scaling parameter that is independent from v1. Modifying the

value of v1 may change the shape of the model in a variety of ways. However,

the average distance of the vertices from the center must be invariant under

such modi�cations (otherwise calulations will be inaccurate, potentially in a

subtle way). The parameters for this type of model typically work together

to manipulate the angular components of the spherical vertex coordinates.

This type is best suited for models with a cubic point group. Models of this

type include the pyritohedral icosahedron and the elpasolite cuboctahedron.

� Some models have rigid components (e.g. vertically oriented regular poly-

gons), but are not altogether rigid. This includes the fulvalene and biphenyl

skeletons, among others. In these cases, the h̀ parameter type is useful for

constraining the vertical expansion of the rigid parts. However, to fully pre-

serve the shape of such a rigid part while allowing it to change size, the

value of the h̀ parameter must be coupled with that of a ẁ parameter. The

parameter values are linear functions of the variable v1 in these cases.

� The third type of model is entirely managed by a number of variables v1, v2,

etc. Each parameter tends to depend on more than one variable with this

type of model, which makes them the most computationally expensive mod-

els de�ned in Polynator. There is currently only one built-in example; the

truncated hexagonal trapezohedron, which requires constrained parameters

to keep its pentagonal faces planar.

4.10 The Custom Model Relations Menu

The custom model relations window is accessible via Settings → customize: model

relations. It allows the user to establish relations between models, especially cus-

tom models. Two models are related if they have the same number of vertices and

the child model, having more degrees of freedom, can perfectly match any shape

of the parent model. Model relations allow Polynator to pair atoms with model

vertices more e�ciently and more accurately. To establish a new relation, enter

the names of child and parent model, as well as an index map, then press Enter

or click on add. An index map is a short string of integers mapping the vertices

of the parent model onto the child model. The indices of both parent and child

29

model can be viewed in the screens on the left of the window. Instead of a speci�c

index map, it is possible to enter '*automatic', which prompts an algorithm to �nd

valid maps automatically. However, it cannot be guaranteed that all valid maps,

or any, will be found.

4.11 The Custom Graph Templates Menu

Figure 12: A template for the kenogram of an indole molecule is constructed from a
pyrrole and a benzene component.

The custom graph templates window is accessible via Settings → customize:

graph templates. It allows the user to construct templates for graphs of any size

and complexity from simple components. These templates can then be used to

trace graphs, as explained in section 4.5. It should be noted that being able to

construct a graph is very di�erent from devising an e�cient algorithm for �nding

it as a subgraph of a potentially much larger supergraph (see section 3.7). This is

the main reason why Polynator uses the somewhat clunky method of constructing

graphs from smaller components according to speci�c rules instead of just letting

the user construct graphs from scratch by connecting a number of vertices. The

way a graph is constructed determines how it will be traced.

As mentioned above, graphs are constructed by connecting smaller compo-

nent graphs. Which previously de�ned graph templates are used as components

depends on the entry for components. Up to two di�erent component types may

be given. The strategy determines the shape of the underlying graph, which has

component graphs as vertices. An edge between two such vertices is established

30

if and only if the corresponding component graphs share exactly the number of

vertices (atoms) given as the n_connect entry. The underlying graph has to

conform to one of the primitive graph types shown in �g. 7. The n_subgraphs

entry determines the total number of component graphs. The shared_vertices and

additional_edges entries make it possible to construct a unique and contiguous

graph from the components. They each take a list of index tuples, with the indices

referring to vertices of the component graphs. The indices in a shared_vertices

tuple must belong to di�erent components. The corresponding vertices are merged

to form a single vertex in the composite graph. The indices in a additional_edges

tuple must also belong to di�erent components and the tuple must contain

exactly two indices. The corresponding vertices are connected by an edge in the

composite graph.

Other than the seven basic strategies based on the graph types shown in

�g. 7, it is possible to de�ne pattern-type instructions. A pattern is traced by

joining any number of connected components. This makes it more open-ended

than instructions based on the typically very precise basic strategies. A collection

functions as a way to combine various tracing targets under one label. A collection

may have any number of components and those components are not required to

share any speci�c qualities.

The elements option makes it possible to specify elements for some or all

of the vertices in a graph. This includes wildcards (see tab. 2). It is highly

recommended to use this only on primitive graphs (e.g. star[4], ring[6]) and to

construct more complex labelled graphs from those labelled primitives. False

positives with regards to element positions may be traced unless con�rm isomer is

selected. For example, when tracing an imidazole kenogram based on a template

without con�rm isomer, pyrazole molecules may also turn up. This is also true for

composite graphs based on labelled components. If con�rm isomer was unselected

in �g. 12, any isoindole molecules would also be found when tracing based on the

displayed template.

5 Output Files

Output �les for all evaluated objects can be generated via Generate output �les.

They will be put into a subdirectory of the folder holding the input �les that were

31

evaluated. There are seven types of output �les, the generation of which can be

toggled in the Settings menu: two types of data tables, general output �les, atom

speci�c output �les, two types of minimal .cif �les and .log �les.

5.1 Data Tables (.csv)

Two data tables may be generated as single .csv �les which contain the most rele-

vant information about all atom arrangements and �tted models, respectively. The

real_atom_arrangements.csv �le contains the composition, volume and number

of atoms for each atom arrangement, as well as δ values referring to a the closest

line, plane, or sphere containing all model vectors (see section 3.5). This �le can

be generated without �tting any models. The model_�ts.csv �le includes the dis-

tortion value, the volumes of the convex hulls of atom arrangements and model

polyhedra, the averaged linear distance between paired atom and model vectors,

the radial and angular portions of said distance and the free and constrained pa-

rameter values for each �tted model.

5.2 General Output Files (.out)

General output �les are purely text-based. One such �le is generated for each

atom arrangement. It contains general information about the atom arrangement

at the top and a section with information about each individual �t after that.

These sections are separated from each other by wide horizontal lines. Each

section is further divided into paragraphs.

The paragraph at the very top contains general information for the evalu-

ated atom arrangement, such as the number of atoms, chemical composition and

volume. The excentricity vector is the distance between the central atom and

the centroid of all atoms. The three special δ values are explained in section 3.5.

The second paragraph contains a Python dictionary with all input instructions to

document the setup for this batch of results.

The �rst model-speci�c paragraph gives general information such as the

name, point group, distortion value and volume of the model polyhedron. The

third block holds some statistical information. This includes averages for the

linear di�erence measures from the previous block. The standard deviation given

for the length of the di�erence vector should not be confused with a quanti�cation

32

of measurement errors; Polynator's statistical errors are negligible (many tests

suggest the same is true for systematic errors). In addition, this block gives the δ

value for a central projection of all atom and model vectors onto a unit sphere and

for a cylindrical projection onto the model axis. The model constructor gives a

Python dictionary of the model belts and their parameters. For more information

on this entry, see sections 5.2 and 5.4. It might help to try out the custom model

construction window. Lastly, the .out �le lists the parameter values broken down

into free and constrained parameters. These can be quite useful to measure e.g.

the average height of a coordination environment or the torsion angle between

the hexagonal rings in a biphenyl unit. However, it is important to be aware of

prefactors! For instance, φ parameters often apply to two counterrotating belts,

as marked by a minus sign before one of the 'phi' parameter names in the 'model

constructor' block above. In that case, the value given for the φ parameter must

be doubled to obtain the correct torsion angle between the two belts.

5.3 Atom Speci�c Output Files (.aso)

These are structured similarly to the .out �les, but they contain information on

the level of individual atoms and model vertices. Each �le starts by listing the

coordinates of all �tted atoms and their distance from the central atom (or from

the centroid if a molecule or cage was evaluated). If Voronoi vertices were �tted,

a similar list is generated for them.

The �le continues with model-speci�c vectors and related information. All

coordinates given are fractional (the same format you would �nd in a .cif �le).

Each atom vector comes with a vertical component (parallel to the model axis)

and a horizontal component (orthogonal to the model axis). The 'angular

di�erence' refers to the angle a given ligand vector is displaced from its model

counterpart, from the perspective of the model center. 'Radial di�erence' means

the di�erence between the distances of that atom vector and its model counterpart

from the centroid. The 'angular di�erence' is just the angle between atom and

model vertex from the perpective of the centroid. It is split into the spherical

coordinate components 'phi di�erence' and 'theta di�erence'.

33

5.4 Minimal Coordinate Files (.cif)

The minimal .cif �les Polynator creates are intended mostly for visualization and

perhaps veri�cation in an external program. They have space group P1 regardless

of the original space group and contain only the atoms and model vertices involved

in the respective �t. There are two versions of these �les: fractional and cartesian.

Both are true to the size and proportions of the original coordination environment,

but only the fractional version is also true to the original unit cell. However,

that version may have unconvenient placement and overlaps between translated

coordination environments, which can be avoided by using the cartesian version.

5.5 Report Files (.log)

The .log �le mostly tries to record if something went wrong during the computa-

tions. If you observe unexpected behaviour, it might be worthwhile to look at this

�le.

6 Navigating the Code

6.1 General Structure

Polynator is written in a loosely object-oriented style. While most of the code

consists of class de�nitions, there are also some global constants (located at the

beginning of the script) and independent functions (towards the end). There are

19 classes relevant to the backend and 25 other classes which manage the graphical

user interface (GUI). Other than the modules imported from the standard library,

all of the code is contained in the polynator_gui.py, polynator_main.py and poly-

nator_model_constants.py �les. This short guide will ignore the GUI and focus

exclusively on the backend.

6.2 Classes

The MainProcess class orchestrates the backend at the highest level. It holds

general information such as the user input and the blueprints used to construct

models. Its run_full method starts the process by instantiating Structure

objects. What was just the Structure class up to version 1.5 has now been

split into the BasicStructure, CoordinationEnvironmentStructure and Molecu-

34

larStructure classes, the latter two inheriting from the former. Each of these

processes the information read from one input .cif or .xyz �le by the Input-

FileParser class. The create_supercell method performs symmetry operations

on the raw atom vectors to generate atoms �lling at least a 3× 3× 3 super-

cell. The data for coordination environments or molecules is collected by the

create_coordination_environments or create_molecules methods. Each set of

atoms is then further processed by an AtomArrangement object instantiated by

the MainProcess.create_atom_arrangements method. An AtomArrangement

object contains information about a single molecule, coordination environ-

ment or Voronoi polyhedron and is responsible for administering models to

it. After retrieving the appropriate ModelPrecursor containers from the Main-

Process.dict_model_precursors dictionary, it starts to assign the atom vectors

to the belts of the �rst model with its assign_to_belts method. Only after

this assignment step is complete, a ModelFit object is instantiated by the

AtomArrangement.run_assignment method. The actual �tting procedure is then

carried out by this object.

The information about each atom generated by the Structure class is stored in

Atom containers, which inherit from the abstract Vertex class. A Vertex has

at least two attributes: an .index integer for identi�cation and a .neighbors

list to store connections with neighboring vertices. The BasicGraphTracer and

SymmetricGraphTracer classes trace graphs (see section 3.7) with the help of

the Subgraph class, which inherits from the Vertex class and stores a number of

Atoms. To make the process of connecting Vertices more e�cient, the CellSub-

division class implements a spatial hash, which is utilized by the Structure and

GraphTracer classes.

Voronoi polyhedra are constructed by the VoronoiDiagram class and its

subordinate DelaunayTetrahedron and VoronoiFace classes using a �ip-based

incremental insertion algorithm for the construction of the dual Delaunay

tetrahedralization. Convex hulls are constructed by the ConvexHull class and

its subordinate ConvexFace class via a divide and conquer algorithm. Mini-

mal bounding spheres are constructed by the get_minimal_bounding_sphere

function.

35

6.3 Global Constants

A notable constant is the Dict_Model_Blueprints, which has model names

as keys and tuples of dictionaries as values. Each tuple contains the information

necessary to construct and manipulate the model vertices. This is split up into

belt dictionaries, each holding information such as the number of atoms 'n',

initial height and width 'h_init' and 'w_init', as well as a number of free or

constrained parameters. Dict_Model_Bits_N_Bobs holds auxiliary infor-

mation about each model, such as tags, point group symmetry and the number of

variables. It notably also contains the information required for the computation

of constrained parameters. It is found in the entries for 'parameter_bundles' and

'bundle_domains'. Dict_Model_Edges contains tuples encoding the edges

between model vertices

Dict_Model_Names_By_Graph_Id and Dict_Model_Graph_

Automorphisms contain the necessary information to assign model

vertices using the graph theoretical method outlined in section 3.2.3.

Dict_Symmetry_Relations encodes relationships between models. This

means mostly symmetry relations, but also other relations between topologically

equivalent models with di�erent degrees of freedom (e.g. between a rigid and

a dynamic trigonal prism). It allows a derivative model to inherit its belt

assignment from a previously �tted parent model (not to be confused with class

inheritance). This is encoded in the encapsulated lists of lists of integers. Each

integer is the index of an atom vector in the �attened belts_real attribute of the

parent ModelFit object.

Dict_Graph_Templates holds information utilized by the Graph classes to

construct and trace various molecular subunits and cages in a larger network of

atoms. Each set of instructions is encoded in a dictionary. Each such dictionary

(also found as the target_dict attribute of a Graph object) has entries specifying

the number of atoms and vertices, as well as the strategy (see section 3.7). If the

traced graph is based on a combination of component graphs, the dictionary will

include additional entries. The component_clusters entry is always a tuple of two

other graph names (except if the strategy is 'collection').

36

6.4 Model Parameters

All parameter types other than 'sc' have a version with an '_init' su�x, which

signals a �xed parameter, as opposed to a free or dependent one. These '_init'

values are applied when the model prototypes are constructed by the ModelPre-

cursor.construct_prototype function. They are useful for the construction of many

rigid models, including the rigid base models for dynamic models with constrained

parameters. The modulating parameters described in section 3.4 go along with suf-

�xes '_frq' and '_o�' for the frequency and o�set of the sinusoidal wave function,

respectively. If a model requires more than one modulated parameter of the same

type in the same belt, the type name of the second parameter, as well as its '_frq'

and '_o�' supplements are pre�xed with one or more additional leading '∼' char-
acters. As discussed in section 3.4, some models require multiple parameters to be

constrained as a function of a single variable. If a blueprint contains one or more

such 'parameter_bundles', they are de�ned in the dict_info section, along with a

'bundle_domains' dictionary, which de�nes the domain of each bundle variable as

a tuple with the minimal, maximal and starting value, respectively.

References

[1] D. Waroquiers, J. George, M. Horton, S. Schenk, K. A. Persson, G.-M.

Rignanese, X. Gonze, G. Hautier, Acta Crystallogr. B, 2020, 76, 683�695.

[2] M. O'Kee�e, Acta Crystallogr. A, 1979, 35, 772�775.

[3] H. Zabrodsky, S. Peleg, D. Avnir, J. Am. Chem. Soc., 1992, 114, 7843�7851.

[4] M. Pinsky, D. Avnir, Inorg. Chem., 1998, 37, 5575.

[5] W. Kabsch, Acta Crystallogr. A, 1976, 30, 513.

37

